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Preface

The concept of nonlinear normal modes (NNMs) provides a solid and rigorous theoretical
framework for the analysis of the nonlinear oscillations of mechanical systems. If NNMs
have been studied since more than fifty years, it is only very recently that contributions
dealing with their numerical calculation have been reported in the literature. Although
these methods pave the way for the application of NNMs to more complex systems, they
have not yet reached the necessary maturity. In this context, the purpose of this research
is (i) to further investigate the performance of an existing method for computing the
NNMs of conservative systems and (ii) to propose two new methods for the computation
of NNMs of nonconservative systems.

The first contribution of this thesis is to calculate the NNMs of a real-life aerospace
structure, the SmallSat spacecraft developed by EADS Astrium. An algorithm that com-
bines an advanced shooting method with the pseudo-arclength continuation technique is
utilized. We show that the NNMs provide a very useful interpretation of the strongly
nonlinear dynamics of the spacecraft. One specific contribution is to numerically repro-
duce with great fidelity several interactions between modes with noncommensurate linear
frequencies that were observed experimentally.

The second original contribution of this thesis is to develop two new methods for com-
puting the NNMs of damped systems. The first method solves the partial differential
equations (PDEs) governing the geometry of the NNM. The PDEs are recognized as
hyperbolic, and it is shown that they require appropriate numerical treatments includ-
ing specific boundary conditions. The proposed method combines a streamline upwind
Petrov-Galerkin finite-element formulation with a resolution strategy based on annular
domains to grow sequentially the manifold. The algorithm is demonstrated using a wide
variety of systems ranging from two-degree-of-freedom to multi-degree-of-freedom non-
linear systems with linear and nonlinear damping. The applicability of the algorithm to
complex real-life structures is demonstrated using a full-scale aircraft. The second method
presented in this work computes a NNM as a collection of trajectories defined with bound-
ary value problems (BVPs). The method has the distinctive advantage that it does not
rely on a parameterization of the NNM. It is demonstrated on two-degree-of-freedom
examples featuring linear and nonlinear damping.
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Introduction

Modal analysis is central in the study of linear vibrating systems and is arguably the most
popular tool in structural dynamics. It is based on the concept of linear normal modes
(LNMs). Each LNM is an intrinsic structural property which represents the synchronous
vibration of the structure at resonance. It is characterized by three modal parameters,
namely the modal shape (i.e., the structural deformation), the natural frequency and the
damping ratio. One remarkable mathematical property of LNMs is that there exist or-
thogonality relations between them. The first consequence is the principle of invariance
which states that if the motion is initiated on one specific LNM, it remains on this mode
while all other modes remain quiescent for all time. The second consequence is the princi-
ple of modal superposition, i.e., free and forced oscillations of the system can be expressed
as a linear combination of LNMs. They have thus the interesting property of uncoupling
the equations of motions, i.e., they allow describing large-scale structures in terms of
lower-order and simpler systems. One of the first applications of LNMs was thus model
reduction with, for instance, the well-known Craig-Bampton method. Another remark-
able feature of LNMs is that they can be determined either from a mathematical model by
solving an eigenvalue problem (theoretical modal analysis) [51] or from experimental data
using techniques developed for more than 50 years (experimental modal analysis) [45].
This duality is extensively used for finite element model updating and validation of real-
world systems. Nowadays, it is fair to say that modal analysis is a mature field. It has,
for instance, become an integral part of certification processes in the aerospace industry.

With continual interest in expanding the performance envelope of engineering systems,
aerospace structures are designed to be lighter and more flexible introducing, e.g., large-
amplitude vibrations and reinforcing the presence of nonlinear components or materi-
als. For instance, the recourse to carbon-fiber composite materials is frequent but their
dynamical behavior can substantially deviate from linearity. In addition, the growing
importance of interconnections between sub-components leads to interfaces with com-
plex behavior. An accurate modeling of their dynamics requires apprehending damping
mechanisms which often go beyond the simplistic linear viscous assumption. They can
be described, for instance, using nonlinear hysteresis models. Clearly, in this context,
linearity is an idealization, an exception to the rule.

Classical modal analysis is however based on the assumption of linear behavior and can
actually fail in the presence of nonlinear phenomena. Any attempt to apply traditional
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Introduction 2

methods results, at best, in a suboptimal design. The development of a nonlinear analog
to linear modal analysis is thus an active research area. In this context, the concept
of nonlinear normal modes (NNMs) has proved to offer solid theoretical foundations for
interpreting the dynamics of nonlinear systems. Pioneered in the 1960s [136–138], NNMs
are regarded as the direct extension of LNMs to nonlinear systems providing a clear con-
ceptual relation between both concepts. In particular, despite they possess new properties
peculiar to nonlinear systems, NNMs are still viewed as intrinsic structural properties and
represent the structural deformation in the vicinity of the nonlinear resonance [157]. For
this reason, similarly to their linear analog, NNMs were mainly used to interpret the sys-
tem’s response to harmonic excitation and for the purpose of nonlinear model reduction
(e.g., in [2, 97]).

Interestingly, among the wide variety of nonlinearity sources, the NNM literature mainly
focused on localized stiffness nonlinearities [50, 157] and on distributed (geometrical) non-
linearities [2, 151]. In this conservative framework, the first numerical method addressing
NNM computation was presented in [147]. Later, more advanced approaches were de-
veloped as, e.g., in [5]. In the same direction, an effective computational method was
developed at the University of Liège in M. Peeters’ PhD dissertation [50, 119, 120]. The
method was not only applied to academic examples but also to an industrial structure,
the Morane Saulnier MS-760 Paris aircraft [74]. In the 1990s, the concept of NNM was
extended to nonconservative systems [144, 145]. Using analytical methods, NNMs were
calculated for systems including linear and nonlinear damping [92, 145, 153]. More re-
cently, different interpretations of the definition of NNMs led to several numerical methods
for computing them [9, 13, 91, 126].

Motivation

Even if effective numerical tools for NNM computation are becoming available, the current
practice in industry is still to ignore nonlinearities, arguably because their analysis is
regarded as impractical.

The first objective of this doctoral thesis is to demonstrate that addressing and inter-
preting the dynamics of real-life systems using NNMs is within reach. To this end, the
dynamics of a spacecraft, the SmallSat satellite developed by EADS Astrium, is investi-
gated. The NNMs of the spacecraft are computed using advanced numerical techniques,
and their ability to clarify the complicated dynamics of the structure is examined.

The second objective of this work is to propose an effective algorithm for computing the
NNMs of general nonconservative systems. This is a central step for uncovering the role
played by damping and understanding further the dynamics of real-life structures. Damp-
ing is present in all structures and is responsible for the limited response of the system
at resonance. It thus plays a key role in structural integrity. However, damping also in-
troduces additional complexity and makes difficult any attempt to accurately predict the
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behavior of the system. For instance, nonlinear damping can introduce hardening or soft-
ening behavior [24, 98]. Although the theoretical framework for NNMs of nonconservative
systems exists, computing them is a challenging task.

The purpose of this doctoral thesis is thus to progress further in the development of a
practical nonlinear modal analysis in structural dynamics and, in particular, in aerospace
engineering. To this end, the present manuscript is divided into six chapters as follows.

Chapter 1 introduces the concept of NNMs and briefly discusses their fundamental prop-
erties. The contributions present in the technical literature are briefly reviewed, and a
particular attention is given to the computational method used in Chapter 2. The rest of
the chapter is then devoted to the concept of NNMs for nonconservative systems. Their
definition as two-dimensional invariant manifolds in phase space is discussed, and the dif-
ferent mathematical formulations existing in the literature are presented. The approach
proposed by Shaw and Pierre which describes NNMs using partial differential equations
(PDEs) is further investigated in this work. After briefly reviewing the existing numerical
methods, the motivation for developing a novel algorithm is evidenced.

Chapter 2 investigates the nonlinear dynamics of the SmallSat spacecraft. A detailed
finite element model of the satellite is built, and an experimentally-identified model of
the nonlinear isolation device is incorporated into the model. The satellite presents a
rich dynamics including jumps, high-frequency content, and modal interactions. Some of
the phenomena observed experimentally are evidenced numerically using time integration
and continuation methods. An additional bifurcation analysis also reveals the existence
of quasiperiodic regimes of motion. Finally, the NNMs are computed and the behavior
of several modes exhibiting nonlinear modal interactions and energy localization is dis-
cussed in great detail. Overall, very good qualitative agreement between experimental
and numerical results is noticed.

Chapter 3 develops a novel method for computing the NNMs of nonconservative systems.
The algorithm is based on a discretization of the manifold-governing PDEs using finite
element techniques. The theoretical basis of the method as well as its different steps are
described in detail. The method allows computing NNMs as invariant manifold for both
conservative and nonconservative systems and directly addresses the limitations exhibited
by the earlier contributions.

Chapter 4 demonstrates the accuracy and effectiveness of the proposed method using
four examples of increasing complexity. First, a two-degree-of-freedom (2DOF) system
demonstrates the general applicability of the method. A cantilever beam with nonlinear
boundary conditions is then considered to show the effectiveness of the method for me-
chanical systems with increased dimensionality. The third example considers the presence
of nonlinear damping in a 2DOF system composed of two coupled Van der Pol oscillators.
Finally, a preliminary analysis of the NNMs of a full-scale aircraft shows that the method
can deal with large-scale systems.

Chapter 5 addresses the computation of NNMs for systems possessing more complex
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damping models. It is shown that the finite-element-based method developed in Chapter 3
requires numerically-robust boundaries for the computational domain. This is achieved
using domains defined with Lyapunov functions. The improved algorithm is illustrated
using a two-degree-of-freedom system with regularized Coulomb friction.

Chapter 6 investigates an alternative method for the computation of damped NNMs. The
two-dimensional manifold is computed as a one-parameter family of trajectories calculated
through a boundary value problem. The method does not rely on a predefined parameter-
ization, which overcomes an important assumption in the description of NNMs proposed
by Shaw and Pierre. The approach is illustrated with two different two-degree-of-freedom
systems possessing a cubic spring and regularized Coulomb friction, respectively.

Finally, conclusions regarding the completed research and the contributions to nonlinear
modal analysis are drawn. The perspectives of the present work are discussed.



Chapter 1

The Concept of Nonlinear Normal
Modes

Abstract

This chapter introduces the concept of nonlinear normal modes (NNMs) and
briefly discusses their fundamental properties. The contributions present in the
technical literature are briefly reviewed, and a particular attention is given to
the concepts exploited in the following chapters. The computational method
used in Chapter 2 is presented. The rest of the chapter is then devoted to
the concept of NNMs for nonconservative systems. Their definition as two-
dimensional invariant manifolds in phase space is discussed. The approach
proposed by Shaw and Pierre which describes NNMs using partial differential
equations is further investigated in this work.

5



Chapter 1. The Concept of Nonlinear Normal Modes 6

1.1 Introduction

The objective of this first chapter is to acquaint the reader with the concept of nonlinear
normal modes (NNMs). The two main definitions of NNMs are given in Section 1.2. The
fundamental properties of NNMs are discussed in Section 1.3. Section 1.4 follows with a
brief review of existing methods for NNM calculation. A particular emphasis is placed on
the methods exploited and developed in this thesis. The continuation algorithm used in
Chapter 2 is presented in Section 1.4.1, and the mathematical formulation of NNMs for
nonconservative systems is presented in Section 1.4.2. The approach of Shaw and Pierre,
which forms the basis for the developments of Chapter 3, is detailed in Section 1.5. The
corresponding numerical methods are discussed in Section 1.6. Finally, conclusions are
drawn in Section 1.7 and underline some of the remaining challenges that are addressed
in the present thesis.

1.2 Definitions of NNMs

The theoretical foundations which serve as the cornerstone of NNMs developments were
laid down by Lyapunov and Poincaré. In his center theorem and under some regularity
assumptions, Lyapunov stated that for a finite-dimensional Hamiltonian system whose
linearized system possesses purely imaginary eigenvalues with non-commensurate ratios
(non-resonance condition), there exist N families of periodic solutions [72, 100]. At low
energy, the periodic solutions of each family are in the neighborhood of a linear normal
mode (LNM) of the linearized system. These N families define N NNMs that can be
regarded as the nonlinear extensions of the N LNMs of the underlying linear system.

1.2.1 Rosenberg’s Definition

Based on these theoretical developments, the concept of NNMs was pioneered in the 1960s
by Rosenberg [138]. Regarded as a rigorous extension of LNMs to nonlinear systems,
NNMs were initially defined as a vibration at unison of the system, i.e., as synchronous
oscillations [136–138]. The definition suggests that all degrees of freedom (DOFs) move
with the same frequency, reach their extreme values and cross zero at the same time.
During a NNM motion, each coordinate i (i 6= k) can thus be expressed as a function
xi = x̂i(xk) of a master coordinate xk. These functions are referred to as the modal
curves and are a priori nonlinear. In the particular case where x̂i(xk) = cixk with the ci’s
constant, the modal curves form straight lines. Similarly to a linear system, there thus
exists a constant relation between all the coordinates of the system, and the NNM is said
similar.

Rosenberg’s approach was further developed by Rand [130–133], Manevitch and Mikhlin [101],
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and the reader is referred to [106, 155, 157] for more comprehensive reviews about the
early developments.

As illustrated in [119, 120], Rosenberg’s definition might appear as too restrictive un-
der some circumstances. An extended definition considering NNMs as non-necessarily
synchronous periodic oscillations was recently proposed in [94]. This definition allows
accounting for the presence of new resonance phenomena (see Section 1.3.2) and is at-
tractive when targeting the computation of NNMs [75, 120]. This extended definition is
the approach considered in Chapter 2 of this thesis.

1.2.2 Shaw and Pierre’s Definition

In the 1990s, Shaw and Pierre proposed an alternative definition that provides an elegant
extension of NNMs to nonconservative systems. Based on geometric arguments, they
defined an NNM as a two-dimensional invariant manifold in phase space [144, 145]. In
particular, they defined a normal mode of motion for the non-linear, autonomous system
as a motion which takes place on a two-dimensional invariant manifold in the system’s
phase space. This manifold has the following properties: it passes through a stable equilib-
rium point of the system and, at that point, it is tangent to a plane which is an eigenspace
of the system linearized about that equilibrium [145].

This approach generalizes the property of invariance of LNMs to nonlinear systems, and
NNMs are understood as the direct foliation of the two-dimensional linear eigenspaces
spanned by the LNMs of the linearized system. Figure 1.1 illustrates this concept and
presents the invariant manifold of the first (in-phase) NNM of a 2DOF system (described
in Figure 1.2). At the origin, the curved surface that represents the NNM is tangent to
a LNM. In Rosenberg’s framework, the invariant manifold is paved by the collection of
periodic orbits.

Shaw and Pierre’s definition is more general than Rosenberg’s definition because it is ap-
plicable to both conservative and nonconservative systems. The definition is also the com-
mon denominator to several mathematical formulations describing the NNMs of damped
systems (cf. Section 1.4.2).

The approach of Shaw and Pierre was applied for both continuous [17, 143, 146] and
discrete mechanical systems [144, 145], and enjoyed many applications in different con-
texts, e.g., in piecewise-linear systems [27, 65], in rotating systems [96, 122], aeroelastic
pitch-plunge models [42] and, more generally, in nonconservative systems [145, 163].
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Figure 1.1: NNM as two-dimensional invariant manifold for the conservative 2DOF sys-
tem (1.1). The periodic orbits (in orange) pave the surface of the manifold.

1.3 Fundamental NNM Properties

NNM properties are illustrated using the 2DOF system pictured in Figure 1.2. The
equations of motion governing the dynamics are

ẍ1 + (2x1 − x2) + 0.5x3
1 = 0,

ẍ2 + (2x2 − x1) = 0. (1.1)

This seemingly simple system presents nevertheless a majority of the generic characteris-
tics of NNMs. Moreover, although system (1.1) is conservative, the properties discussed
herein also apply to NNMs of nonconservative systems (as we shall see in the next chap-
ters). Finally, we will show that, despite NNMs possess new properties peculiar to non-
linear systems, they also have a clear conceptual relation to LNMs.

1 1

1 1 1

0.5 x1 x2

Figure 1.2: Schematic representation of the 2DOF system example.
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1.3.1 Frequency-Energy Dependence

A general feature of nonlinear systems is the frequency-energy dependence of their os-
cillations. An appropriate graphical depiction of NNMs is thus a frequency-energy plot
(FEP) where a NNM is represented by a family of points, drawn at the minimal period
of the periodic motion and at an energy equal to the conserved total energy during the
motion. A branch, represented by a solid line, is a family of NNM motions possessing the
same qualitative features (e.g., the in-phase NNM motions of a 2DOF system). The FEP
of system (1.1) is presented in Figure 1.3 and was computed using the shooting method
described in Section 1.4.1. The backbone of the plot is formed by two branches, which
represent in-phase (bottom) and out-of-phase (top) synchronous NNMs. The FEP clearly
shows that nonlinear modal parameters depend on vibrational energy:

• The frequency of both the in-phase and out-of-phase NNMs increases with the en-
ergy level, which reveals the hardening characteristic of the system.

• The modal curves, i.e., the curve drawn in the configuration space defined by the
displacements x1(t) and x2(t), change for increasing energies. They are illustrated
with the insets in Figure 1.3. As energy increases, the straight line becomes curved
as a sign of the nonlinear relationship which exists between x1 and x2.

• The out-of-phase modal curve evolves toward an horizontal line as the NNM tends
to localize the energy in the first mass. This localization phenomenon is generic in
nonlinear systems [11, 77, 157] and can occur even for perfectly symmetric systems
(see, e.g., [50]).

1.3.2 Internal Resonances

A salient feature of nonlinear systems is that NNMs may interact during a general motion
of the system. In the presence of these interactions, NNMs with well-separated funda-
mental frequencies can exchange energy. These couplings, often referred to as modal
interactions or internal resonances, possess no linear counterpart and are realized thanks
to the presence of harmonics in the response of the system. Modal interactions have been
studied extensively in the literature (see, e.g., the monograph [108]). A case of particular
interest is when the linear natural frequencies are commensurate or nearly commensu-
rate [16, 77, 87, 108]. As a consequence, an harmonic of the lowest-frequency mode
coincides with the fundamental frequency of another NNM which leads to an interaction.

Due to the frequency-energy dependence of NNMs, it was further shown that such in-
teractions can also develop between modes with non-commensurate linear frequencies. It
is for instance the case of system (1.1) which possesses a ratio of

√
3 between its linear

natural frequencies. Figure 1.4 presents the FEP of system (1.1) when NNM computation
is carried out at higher energy levels. A loop, termed tongue, appears in the continuity
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Figure 1.3: Frequency-energy plot of system (1.1). NNM motions depicted in the configu-
ration space are inset. The horizontal and vertical axes in these plots are the displacements
of the first and second DOFs, respectively; the aspect ratio is set so that increments on
the horizontal and vertical axes are equal in size to indicate whether or not the motion is
localized to a particular DOF.

of the backbone branch. To thoroughly understand this resonance mechanism, the out-
of-phase NNM branch is represented in the FEP at the third of its frequency. This is
relevant, because a periodic solution of period T is also periodic with period 3T . The
resulting branch is pictured in dashed lines. It turns out that a smooth transition from
the in-phase to the out-of-phase mode occurs on the tongue. This transition is also de-
picted in Figure 1.5 where the evolution of the configuration space and of the Fourier
coefficients is shown for several points on the tongue or in its vicinity. Starting from
NNM motion (a), an in-phase motion characterized by two perceptible harmonic compo-
nents is observed. From (a) to (d), the relative importance of the third harmonics grows,
as clearly confirmed by the motion in the configuration space. Moving from (d) to (e)
corresponds to a drastic qualitative change in the dynamics. First, the first harmonic has
completely disappeared for both oscillators. Second, the signs of the coefficients of the
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third harmonics are opposite. Overall, this means that an out-of-phase motion with a
three times as large frequency is realized. Eventually, through a 3:1 internal resonance,
the motion ends up on the out-of-phase mode. From (f) to (h), the relative importance
of the third harmonic diminishes, and a motion qualitatively similar to that at (a) is
observed. However, the configuration space of NNM (h) reveals the presence of a fifth
harmonics, which is a precursor to the gradual development of another tongue along which
a 5:1 interaction takes place. Following the same reasoning, it can be shown this simple
two-degree-of-freedom system exhibits a countable infinity of interactions (2:1, 4:1, 5:1,
etc.). This was confirmed numerically in [75].
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Figure 1.4: Frequency-energy plot of system (1.1). −−−: out-of-phase NNM represented
at the third of its fundamental frequency.

1.3.3 Bifurcations and Stability

A third fundamental property of NNMs is that their number may exceed the number of
DOFs of the system. Due to mode bifurcations, not all NNMs can be regarded as the
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Figure 1.5: Internally resonant NNMs (3:1 resonance). Top plot: close-up of the tongue
in the frequency-energy plot. Bottom plots: configuration space (horizontal axis: x1;
vertical axis: x2) and Fourier coefficients of a series containing cosine terms only (grey:
x1; black: x2).
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nonlinear continuation of a LNM. One example is displayed in Figure 1.6 where a new
branch of NNMs emerges from the main curve through a (symmetry-breaking) bifurcation.
Such new families of NNMs, which cannot be considered as the extension of any LNM,
were reported for numerous systems [50, 55, 73, 140, 155].

The concept of bifurcations is interrelated with the concept of stability, because a change
in stability occurs through a bifurcation. Therefore, another important characteristic of
NNMs is that they can be stable or unstable, which is in contrast to linear theory where
all modes are neutrally stable. In this context, instability means that small perturbations
of the initial conditions that generate the NNM motion lead to the elimination of the
periodic oscillation. Unstable NNMs are not physically realizable.
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Figure 1.6: Frequency-energy plot for the 2DOF system (1.1) including NNM stability.
Stable – and unstable – – oscillations.

1.3.4 Forced Response

Akin to their linear counterpart, NNMs reflect the structural deformation in the vicinity
of resonance [157]. NNMs have therefore been used to interpret the system’s response
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to harmonic excitation. This property is illustrated in Figures 1.7(a, b) which present
the response of the first and second mass of system (1.1) for several stationary harmonic
excitations of increasing amplitude (from 0.002 N to 0.2 N). The backbone curve of the
first NNM (in dashed line) perfectly predicts the forced resonance of the system. Thanks
to this property, NNMs were extensively used for nonlinear model reduction [2, 13, 97,
114, 123, 125, 128, 149, 152].
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Figure 1.7: Response (–) of the 2DOF system to harmonic forcing computed using con-
tinuation methods and for increasing forcing amplitudes F (from 0.002 N to 0.2 N). The
backbone curve traced by the first NNM (– –).

1.4 Calculation of NNMs

The first constructive technique for NNM calculation, also known as the energy-based
formulation, dates back to Rosenberg’s work [137, 138] and expresses NNMs as modal
curves in the configuration space. This approach was applied and further developed by
Manevitch and Mikhlin [101], by Rand [130], and Vakakis et al. [76, 157]. In the 1970s,
Rand studied NNMs in [130, 131, 133, 134], and, in particular, he studied their stability
in [132]. Since then, many other contributions addressed NNM calculation using various
analytical techniques. Among others, one can note the multiple scales method [49, 86,
87, 104, 111, 162] and the complex normal-form method presented by Lamarque and
Jézéquel [64]. More recently, a real normal-form method was presented in [151, 153, 154].
The harmonic balance method was also employed (e.g., in [20, 110]) but, in view of the
increasing complexity of higher-order expansions, analytical treatments are often limited
to a single harmonic. The periodic solutions of a NNM were viewed as special geodesics on
a Riemannian manifold in [170], and they were approximated using analytic series. Shaw
and Pierre also established a polynomial series expansion for approximating the geometry
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of the two-dimensional invariant manifold describing a NNM [145]. More recently, the
complex averaging method which proposes an elegant formalism to calculate NNMs was
developed by Manevitch [102].

This review is nonexhaustive, and we refer the reader to the book of Vakakis et al. [157]
for a review of the developments before the 1990s and to the recent reviews of Mikhlin et
al. [6, 106].

1.4.1 NNMs Defined as Periodic Solutions

On the one hand, analytical methods have the advantage to provide an explicit expres-
sion for NNMs which allows gaining insight into the system’s dynamics. On the other
hand, such techniques are in essence limited to low-dimensional, weakly nonlinear sys-
tems or regimes of motion. Numerical methods were introduced in order to address these
limitations. In this context, considering NNMs as periodic oscillations of an autonomous
nonlinear system is appealing, because effective algorithms for the numerical continuation
of periodic orbits are well-established [33, 40, 107, 141].

One of the first contributions to NNM computation was presented by Slater in [147]. The
proposed computational procedure directly integrates the governing equations of motion
over one period using a numerical algorithm (e.g., Runge-Kutta or Newmark). In order
to compute isolated NNM motions, initial conditions were modified using an optimization
algorithm that minimizes a cost function representing the lack of periodicity of the current
iterate. The energy was then gradually increased with the previously computed NNM
motion as an initial guess for the next NNM.

Most recent algorithms still employ this two-step procedure where isolated periodic so-
lutions are first computed and then varied to progressively obtain the complete NNM
branch. However, more sophisticated continuation methods are employed. For instance,
the method developed by Cochelin et al. [5, 29] combines harmonic balance and the asymp-
totic numerical continuation. The latter is a semi-analytical continuation technique that
is based on a power series expansion of the unknowns in terms of a control parameter [28].
The approach considered herein uses an alternative algorithm that was proposed in [120].
Its structure is presented in Figure 1.8. The two-step method combines a shooting method
for computing isolated periodic solutions and a pseudo-arclength continuation method for
tracing out the entire family of periodic solutions corresponding to a NNM.

The application of these methods is often limited to low-dimensional and/or academic
examples [117, 162], and contributions for large and complex systems are rare. We can
however cite the work of Kerschen et al. who computed NNMs for an aircraft modeled
with more than 500 DOFs [74] paving the way for application of the NNM concept to
real-life structures.
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Shooting Method

The free response of discrete mechanical systems with N DOFs is considered, assum-
ing that continuous systems have been spatially discretized. The ordinary differential
equations of motion are

M ẍ(t) + K x(t) + fnl (x(t)) = 0 (1.2)

where M and K are the mass and stiffness matrices, respectively; x and ẍ are the dis-
placement and acceleration vectors, respectively; fnl is the nonlinear restoring force vector.

The equations of motion of system (1.2) can be recast into state space form

ż = g(z) (1.3)

where z = [x∗ ẋ∗]∗ is the 2N -dimensional state vector, and (.)∗ denotes the transpose
operation, and

g(z) =

(

ẋ
−M−1 [Kx + fnl(x)]

)

(1.4)

is the vector field. The solution of this dynamical system for initial conditions z(0) = z0 =
[x∗

0 ẋ∗

0]∗ is written as z(t) = z (t, z0) in order to exhibit the dependence on the initial
conditions, z (0, z0) = z0. A solution zp(t, zp0) is a periodic solution of the autonomous
system (1.3) if zp(t, zp0) = zp(t+ T, zp0), where T is the minimal period.

The NNM computation is carried out by finding the periodic solutions of the governing
nonlinear equations of motion (1.3). In this context, the shooting method is a popular
numerical technique which solves the two-point boundary-value problem defined by the
periodicity condition

H(zp0, T ) ≡ zp(T, zp0) − zp0 = 0. (1.5)

H(z0, T ) = z(T, z0) − z0 is called the shooting function and represents the difference
between the initial and final state (at time T ) of the system. Using direct numerical time
integration and the Newton-Raphson algorithm, the shooting method consists in finding,
in an iterative way, the initial conditions zp0 and the period T that realize a periodic
motion.

The phase of the periodic solutions is not fixed. If z(t) is a solution of the autonomous
system (1.3), then z(t+ ∆t) is geometrically the same solution in state space for any ∆t.
Hence, an additional condition h(zp0) = 0, termed the phase condition, has to be specified
in order to remove the arbitrariness of the initial conditions.

In summary, an isolated NNM motion is computed by solving the augmented two-point
boundary-value problem defined by

{

H(zp0, T ) = 0
h(zp0) = 0

(1.6)
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Continuation of Periodic Solutions

Due to the frequency-energy dependence, the modal parameters of an NNM vary with
the total energy. An NNM family, governed by equations (1.6), therefore traces a curve,
termed an NNM branch, in the (2N + 1)-dimensional space of initial conditions and
period (zp0, T ). Starting from the corresponding LNM at low energy, the computation is
carried out by finding successive points (zp0, T ) of the NNM branch using methods for
the numerical continuation of periodic motions (also called path-following methods). The
space (zp0, T ) is termed the continuation space.

Different methods for numerical continuation have been proposed in the literature. The
so-called pseudo-arclength continuation method is used herein.

Starting from a known solution (zp0,(j), T(j)), the next periodic solution (zp0,(j+1), T(j+1))
on the branch is computed using a predictor step and a corrector step.

Predictor step

At step j, a prediction (z̃p0,(j+1), T̃(j+1)) of the next solution (zp0,(j+1), T(j+1)) is generated
along the tangent vector to the branch at the current point zp0,(j)

[

z̃p0,(j+1)

T̃(j+1)

]

=

[

zp0,(j)

T(j)

]

+ s(j)

[

pz,(j)

pT,(j)

]

(1.7)

where s(j) is the predictor stepsize. The tangent vector p(j) = [p∗

z,(j) pT,(j)]∗ to the branch
defined by (1.6) is solution of the system







∂H
∂zp0

∣

∣

∣

(zp0,(j),T(j))

∂H
∂T

∣

∣

∣

(zp0,(j),T(j))

∂h
∂zp0

∗
∣

∣

∣

(zp0,(j))
0







[

pz,(j)

pT,(j)

]

=

[

0
0

]

(1.8)

with the condition
∥

∥

∥p(j)

∥

∥

∥ = 1. This normalization can be taken into account by fixing one
component of the tangent vector and solving the resulting overdetermined system using
the Moore-Penrose matrix inverse; the tangent vector is then normalized to 1.

Corrector step

The prediction is corrected by a shooting procedure in order to solve (1.6) in which the
variations of the initial conditions and the period are forced to be orthogonal to the
predictor step. At iteration k, the corrections z

(k+1)
p0,(j+1) = z

(k)
p0,(j+1) + ∆z

(k)
p0,(j+1), T

(k+1)
(j+1) =

T
(k)
(j+1) + ∆T (k)

(j+1) are computed by solving the linear system












∂H
∂zp0

∣

∣

∣

(z
(k)

p0,(j+1)
,T

(k)

(j+1)
)

∂H
∂T

∣

∣

∣

(z
(k)

p0,(j+1)
,T

(k)

(j+1)
)

∂h
∂zp0

∗
∣

∣

∣

(z
(k)

p0,(j+1)
)

0

p∗

z,(j) pT,(j)

















∆z
(k)
p0,(j+1)

∆T (k)
(j+1)



 =
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







−H(z(k)
p0,(j+1), T

(k)
(j+1))

−h(z(k)
p0,(j+1))
0









(1.9)

where the prediction is used as initial guess, i.e, z
(0)
p0,(j+1) = z̃p0,(j+1) and T

(0)
(j+1) = T̃(j+1).

The last equation in (1.9) corresponds to the orthogonality condition for the corrector
step. This iterative process is carried out until convergence is achieved.

Sensitivity Analysis

Each shooting iteration involves the time integration of the equations of motion to eval-
uate the current shooting residue H

(

z
(k)
p0 , T

(k)
)

= z(k)
p (T (k), z

(k)
p0 ) − z

(k)
p0 . As evidenced by

equation (1.9), the method also requires the evaluation of the 2N × 2N Jacobian matrix

∂H

∂z0

(z0, T ) =
∂z(t, z0)
∂z0

∣

∣

∣

∣

∣

t=T

− I (1.10)

where I is the 2N × 2N identity matrix.

An effective method for determining ∂z(t, z0)/∂z0 is to use sensitivity analysis which con-
sists in differentiating the equations of motion (1.3) with respect to the initial conditions
z0 which leads to

d

dt

[

∂z (t, z0)
∂z0

]

=
∂f(z)
∂z

∣

∣

∣

∣

∣

z(t,z0)

[

∂z(t, z0)
∂z0

]

(1.11)

with
∂z(0, z0)
∂z0

= I (1.12)

since z(0, z0) = z0. Hence, the matrix ∂z(t, z0)/∂z0 at t = T can be obtained by numer-
ically integrating over T the initial-value problem defined by the linear ordinary matrix
differential equations (1.11) with the initial conditions (1.12). The solution of equa-
tions (1.11) is computed together with the solution of the nonlinear equations of motion
in a single numerical simulation. At a periodic solution, the matrix ∂zp(T, zp0)/∂zp0 is the
so-called monodromy matrix. Its eigenvalues, the Floquet multipliers, allow to perform a
stability analysis of the NNM motions.

1.4.2 NNMs Defined as Two-Dimensional Invariant Manifolds

We now consider more general equations of motion

M ẍ(t) + C ẋ(t) + K x(t) + fnl (x(t), ẋ(t)) = 0 (1.13)

where M, C, and K are the mass, damping, and stiffness matrices, respectively; x, ẋ, and
ẍ are the displacement, velocity, and acceleration vectors, respectively; fnl is the nonlinear
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restoring force vector. There is no specific assumption on the damping matrix C which can
have both symmetric (nonconservative) and skew-symmetric (conservative) contributions.
The linear damping needs not to be proportional. The system of equation (1.13) is
transformed into its first-order form

ż = g(z) =

(

ẋ
−M−1 [C ẋ + Kx + fnl(x, ẋ)]

)

=

(

y
f(z)

)

, (1.14)

where the term f represents all the inertia-normalized (linear and nonlinear) elastic and
dissipative forces in the equations of motion.

Shaw and Pierre Formulation

In the presence of damping, oscillations are generally traveling waves because there exists
a phase lag between the DOFs of the system. In the general damping case, the linear the-
ory resorts to complex LNMs to account for this lag. Shaw and Pierre demonstrated that a
description of a mode using a displacement-velocity pair of coordinates is, in essence, sim-
ilar to the complex approach. Hence, they proposed to parametrize the two-dimensional
invariant manifold, or equivalently the NNM, using a single master-pair of state-space
variables, a displacement xk and a velocity yk, the other variables being functionally re-
lated to the master pair. The approach to calculate NNMs was then inspired by the center
manifold theory [25].

Writing the master coordinates as (u, v), the remaining variables follow the constraint
equations

xi = Xi(u, v),

yi = Yi(u, v), i = 1, ..., N ; i 6= k. (1.15)

Similarly to the center manifold approach, the time dependence in the equations of motion
is eliminated by asserting that the motion occurs on the invariant manifold. In this way,
the time derivative of Equations (1.15) gives

ẋi =
∂Xi

∂u
u̇+

∂Xi

∂v
v̇,

ẏi =
∂Yi

∂u
u̇+

∂Yi

∂v
v̇, (1.16)

where u̇ = v and v̇ = fk. Plugging these equations into (1.14) leads to a set of 2N − 2
partial differential equations (PDEs) that can be solved for the Xi’s and Yi’s

Yi(u, v) =
∂Xi(u, v)

∂u
v +

∂Xi(u, v)
∂v

fk,

fi =
∂Yi(u, v)

∂u
v +

∂Yi(u, v)
∂v

fk, (1.17)
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where i = 1, ..., N ; i 6= k, fi = fi(u,X(u, v), v,Y(u, v)) are the components of f (cf.
Equation (1.14)) with X = {Xj : j = 1, ..., N ; j 6= k} and Y = {Yj : j = 1, ..., N ; j 6= k}.

Around the system’s equilibrium point, the manifold-governing PDEs (1.17) admit N
solutions which are the extension of the N underlying LNMs [145]. After solving (1.17),
the constraint equations (1.15) give a geometric description of a NNM in phase space. At
the origin, each NNM is tangent to the linear eigenspace spanned by the corresponding
LNM.

Substituting the Xi’s and Yi’s in the ordinary differential equations governing the master
coordinates xk and yk, the dynamics on the NNM is obtained:

u̇ = v,

v̇ = fk(u,X(u, v), v,Y(u, v)). (1.18)

Interestingly, the dynamics of the full system is reduced to the dynamics of a single-degree-
of-freedom (SDOF) oscillator. These reduction capabilities were exploited for interpreting
the dynamics of the system and for building reduced-order models, e.g., in [4, 21, 123, 125].
NNMs defined as invariant manifolds were also used in continuous [17, 111, 112, 143, 146],
piecewise-linear [27, 65] and gyroscopic systems [96, 161]. This model reduction approach
was latter extended to forced systems in [18, 67].

Normal-Form Approach

The method of normal forms is a perturbation method comparable to the multiple-scales
method [109] and whose foundations date back to Poincaré. It is only recently that
the method was introduced in the context of NNMs of mechanical systems by Jézéquel
and Lamarque [64]. Based on a block-diagonal complex form, the method was however
opaque for structural dynamicists. With the distinctive advantage of keeping the form
of an oscillator, a real normal-form transformation was proposed by Touzé et al. [153].
Furthermore, Touzé et al. demonstrated that the method is strictly equivalent to Shaw
and Pierre’s approach [153]. In a similar trend, Neild and Wagg presented a second-order
normal form transformation [113]. Their approach presents an improved accuracy when
simulating the system’s behavior around the resonance [113].

The idea of normal-form transformations is to apply successive coordinate transformations
to bring the equations of motion in their simplest form. Generally speaking, it extends
the idea of uncoupling the equations of motion by removing the non-resonant nonlinear
terms. If successful, the procedure reduces the dynamics of the full system to the dynam-
ics of SDOF oscillators whose superposition is governed by the nonlinear transformation.
Normal-from transformations thus extend the principle of superposition to nonlinear sys-
tems. This idea was discussed by Pellicano and Mastroddi in [121]. The transformation
can however fail due to the generic presence of the so-called resonant terms.

Adapted from [153], Figure 1.9 illustrates the concept of the transformation. Around the
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equilibrium point of the system (here, the origin), the linear modal displacements Pi and
velocities Qi define straight coordinates which span the phase space with a regular grid.
After the calculation of the normal-form transformation, a set of curved coordinates, i.e.,
the normal coordinates (Ri, Si), is obtained. Each specific pair of these coordinates is
attached to an invariant manifold which represents a NNM. In Figure 1.9, the invariant
manifold are represented by M1 for (R1, S1) 6= 0 and M2 for (R2, S2) 6= 0. Using the
normal coordinates, the phase space is no longer spanned by flat eigenspaces, but rather by
curved invariant manifolds [153]. The method was used for the purpose of reduced-order

(P1, Q1)

(P2, Q2)

(R1, S1)

(R2, S2)

M1

M2

Figure 1.9: Illustration of the linear modal coordinates (Pi, Qi) and the normal coordi-
nates (Ri, Si) associated with the normal-form transformation. The normal coordinates
define the invariant manifolds M1 and M2 which represents the NNMs of the system.
Picture taken and adapted from [153].

modeling and, in particular, most applications considered the reduction of geometrically
nonlinear structures such as beams, plates, shells, etc. [2, 13, 151–153].

Although there exist different attempts to develop numerical normal-form methods (for
instance using symbolic calculations [168, 169] or second-order formulations [113]), as of
now, normal-form methods are mostly analytical techniques.

Amplitude- and Phase-Dependent Modal Quantities

Another interesting approach was proposed by Bellizzi and Bouc, first for conservative
systems [8] and then for nonconservative systems [9]. Similarly to Shaw and Pierre, the
method defines a NNM motion in terms of a single pair of variables, here, an amplitude
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and a phase variable (a(t), ψ(t)). The other coordinates are functionally related to this
pair using the constraint relations

x(t) = a(t)X(a(t), φ(t)),

ẋ(t) = y(t) = a(t)Y(a(t), φ(t)), (1.19)

where X and Y are vector functions representing the modal amplitude. A similar formal-
ism as in Equations (1.15) is deliberately chosen to underline the parallel between both
methods. Amplitude and phase variables are governed by a pair of ordinary differential
equations governing the SDOF motion which takes place on the NNMs [9]:

φ̇(t) = Ω(a(t), φ(t)),

ȧ(t) = a(t)ξ(t)(a(t), φ(t)). (1.20)

The scalar functions Ω and ξ define the motion frequency and damping ratio, respectively.
All together, X, Y, Ω and ξ define the modal motion.

Plugging Equations (1.19)–(1.20) into the equations of motion and removing any explicit
time dependence yields the set of PDEs

(X + aXa) ξ + XφΩ = Y,

M (Y + aYa) ξ + MYφΩ +
1
a

f (aX, aY) = 0. (1.21)

The number of equations in (1.21) is lower than the number of unknowns by two. Addi-
tional normalization conditions are thus added to the set of PDEs.

Equations are then discretized using a Fourier-Galerkin projection similar in principle
to [124] and finally solved using a classical Newton-Raphson procedure. This method was
successfully applied to 2DOF conservative systems [8] and to 2DOF systems including
linear or nonlinear damping [9]. In [117], the resolution strategy was improved to reduce
the computational burden associated with the Fourier-Galerkin projection and applied to
compute the NNMs of a clarinet-like musical instrument. In particular, the method of
lines, where all but one dimensions are discretized using the finite difference method, was
considered to solve NNM equations as an initial value problem.

Complex Nonlinear Modes

In direct analogy with complex LNMs, complex nonlinear modes were introduced by
Laxalde and Thouverez in [91]. The method uses generalized Fourier series to approximate
NNM motions and derive a nonlinear eigenvalue problem. More precisely, the complex
eigensolutions are written as [90, 91]:

x(t) ≈ x(η, τ) =
+∞
∑

p=0

+∞
∑

n=−∞

x̂p,ne
−pη+jnτ (1.22)
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where τ = ωt and η = βt are two new time scales referring to the oscillations and
the envelope modulation (i.e., the nonconservative effects), respectively. Substituting
Equation (1.22) into the equations of motion and using a Fourier-Galerkin projection, a
complex eigenvalue problem is obtained:

∀(p, n) ∈ [0, ..., Np] × [−Nn, ..., Nn] , (−pβ + jnω)2x̂p,n − 〈f , φp,n〉
||φp,n||2 = 0 (1.23)

where 〈f , φp,n〉 denotes the inner product

〈g, h〉 =
1

2π

∫ +∞

−∞

∫ 2π

0
g(η, τ)h(η, τ)dτdη (1.24)

between f and the set of basis functions φp,n(ν, τ) = e−pν+jnτ . The nonlinear force vector
f is calculated in the time domain by reconstructing the displacement and velocity vectors
with the given set of {x̂p,n}. The nonlinear terms are then projected onto the generalized
Fourier basis. In the algebraic system of equations (1.23), the number of unknowns exceeds
the number of equation by two [91]. Similarly to the method in Section 1.4.2, the system
is complemented by an additional mode normalization. A chosen control coordinate is
considered, and the real and imaginary parts of one of its harmonics are used to define
the modal amplitude q as

q = qR + jqI , (1.25)

where j2 = −1. Each eigenvector is accordingly normalized with respect to this modal
amplitude, and the system is solved using Newton-like methods. A continuation algorithm
is then used to evolve the nonlinear eingenvalue solutions for increasing modal amplitudes.
Using an alternative normalization based on the kinetic energy, Krack et al. [79] recently
used this method in the context of friction nonlinearities. Interestingly, the complex modal
amplitude q actually represents the two-dimensional subspace on which the NNM motion
takes place.

1.5 Analytical Approximation of Shaw and Pierre’s

Invariant Manifold

As illustrated in Sections 1.2 and 1.4.2, the concept of NNMs for damped systems has
already enjoyed many contributions, which differ according to the mathematical interpre-
tation of their definition as two-dimensional invariant manifold. In what follows, we focus
on the approach presented by Shaw and Pierre, and we study the PDEs governing the
manifold’s geometry (Equations (1.17)).

1.5.1 Approximation using Polynomial Series Expansion

In general, the equations governing the geometry of the NNM are at least as difficult to
solve as the original set of ordinary differential equations governing the system’s dynamics.
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However, as in the center manifold method [25] or in the general framework of invariant
manifold calculation [54], the PDEs (1.17) allow an approximate solution in the form of
a polynomial series expansion [145]:

Xi(u, v) = a1iu+ a2iv + a3iu
2 + a4iuv + a5iv

2

+a6iu
3 + a7iu

2v + a8iuv
2 + a9iv

3 + ...,

Yi(u, v) = b1iu+ b2iv + b3iu
2 + b4iuv + b5iv

2

+b6iu
3 + b7iu

2v + b8iuv
2 + b9iv

3 + ...,
(1.26)

where the coefficients aji and bji are the new unknowns and describe the geometry of
the manifold. Substituting expressions (1.26) into the PDEs and gathering terms of like
powers in u and v, a set of nonlinear coupled algebraic equations is obtained with, at cubic
order, 18(N − 1) equations for 18(N − 1) unknown coefficients. As illustrated in [145],
the first-order coefficients (a1i, a2i, b1i, b2i) define the plane spanned by the corresponding
LNM. The higher-order coefficients represent thus the deformation of this linear eigenspace
under the effect of nonlinearity. In other words, any deviation from a flat surface is
attributable to nonlinear effects. The linear coefficients can be obtained as in [145] or by
the resolution of the linear eigenvalue problem as follows [148]. The general state-space
form (1.14) of the equations of motion is linearized around the equilibrium of the system:

ż =

(

x
y

)

=

[

0 I
K + ∂f

∂x
C + ∂f

∂y

]

z = Az (1.27)

where A is a linear operator which is assumed to have N distinct pairs of complex conju-
gate eigenvalues λm = αm ± jβm, m = 1, ..., N with their associated complex eigenvectors
zm = zR

m ± jzI

m. It can be shown that zR

m and zI

m, ∀m, are linearly independent, and
may constitute a new basis in the phase space [59], in which the equations of motion take
the block-diagonal form. Focusing on a single-mode contribution, and applying a second
coordinate transformation as suggested in [148], the complete coordinate transformation

z =
[

zR

m zI

m

]

[

βm 0
−αm 1

](

um(t)
vm(t)

)

(1.28)

gives all the coefficients a1i and b1i in the first column and a2i and b2i in the second column
of the matrix product on the right-hand side of the equation. In the case of an undamped
and non-gyroscopic system, there is no phase difference between the DOFs of the system
and, at the linear level, a2i = b1i = 0 and a1i = b2i. One should note that zeroth-order
coefficients, a0i and b0i, can be introduced in the series expansion to account for the special
cases where the nonlinearities shift the equilibrium position from the origin, or generate
an additional equilibrium [145].

It was shown that solving the set of nonlinear algebraic equations can be carried out
at very little cost as higher-order equations are linear in the lower-order coefficients.
Therefore, starting from the results of the eigenvalue problem, the second-order coefficients
are obtained through the resolution of a linear algebraic problem. Based on the linear
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and second-order coefficients, third-order coefficients are obtained, and a similar procedure
follows for higher-order coefficients.

A complete coordinate transformation from the modal space to the physical space (i.e.,
(xi, yi)) using a linear superposition of NNMs was proposed in [145]. As mentioned
in [153], this transformation is erroneous because it omits the presence of nonlinear cou-
plings between the NNMs as illustrated by the normal-form transformations [121]. Those
coupling terms however vanish when the motion takes place on a single NNM, which
shows that the invariance principle can be generalized to nonlinear systems.

1.5.2 Application to a 2DOF example

The NNMs of the 2DOF system (1.1) considered in Section 1.3 are now calculated using
the polynomial expansion. Following Equations (1.14) to (1.17), we have:



















ẋ1 = y1

ẋ2 = y2

ẏ1 = f1(xi, yi) = −x1 − (x1 − x2) − 0.5x3
1 − c1ẋ1 − c2(ẋ1 − ẋ2)

ẏ2 = f2(xi, yi) = −x2 − (x2 − x1) − c2ẋ2 − c3(ẋ2 − ẋ1)

(1.29)

where the ci’s, i = 1, 2, 3, are the coefficients of the different viscous damping terms
introduced in the original Equations (1.1). Using the first pair of state variables as the
master pair, i.e., (u, v) = (x1, y1), the PDEs write

Y2(u, v) =
∂X2(u, v)

∂u
v +

∂X2(u, v)
∂v

f1,

f2 =
∂Y2

∂u
v +

∂Y2

∂v
f1. (1.30)

The slave coordinates X2(u, v) and Y2(u, v) are expanded up to the third and fifth orders
according to Equations (1.26).

Conservative Case

System (1.1) is first considered in the conservative case (i.e., the ci’s are set to zero).
Table 1.1 presents the coefficients obtained for the third-order expansion. Only 5 and 6
terms out of 18 are actually required to describe the in-phase and the out-of-phase NNMs,
respectively. When analyzing the coefficients, it is observed that linear (first-order) coeffi-
cients clearly match the in-phase and out-of-phase motion describing the LNMs. Second-
order coefficients are all zero because there is no quadratic nonlinearity in the system.
The non-zero terms are characteristic of a synchronous motion where displacements u
and X2 cancel out at the same values in the (u, v) plane. Similarly, velocities v and Y2

cancel out simultaneously when displacements are at their maximum values. Finally, Ta-
ble 1.1 shows that the coefficient b7 is zero for the in-phase NNM whereas it is non-zero
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Coeff.
In-phase Out-of-phase

Coeff.
In-phase Out-of-phase

NNM NNM NNM NNM
a1 1 −1 b1 0 0
a2 0 0 b2 1 −1
a3 0 0 b3 0 0
a4 0 0 b4 0 0
a5 0 0 b5 0 0
a6 0.1667 0.1923 b6 0 0
a7 0 0 b7 0 0.2308
a8 0.25 0.0577 b8 0 0
a9 0 0 b9 0.25 0.0577

Table 1.1: Coefficients of the third-order polynomial expansion describing the manifold
geometry in the conservative example.

Coeff.
In-phase Out-of-phase

Coeff.
In-phase Out-of-phase

NNM NNM NNM NNM
a15 0.0152 −0.0197 b15 0 0
a16 0 0 b16 0.0455 −0.0302
a17 −0.0682 −0.0173 b17 0 0
a18 0 0 b18 −0.0909 −0.0198
a19 0.0028 −0.0021 b19 0 0
a20 0 0 b20 0.0028 −0.0021

Table 1.2: Coefficients for the fifth-order polynomial description of the manifold geometry
in the conservative example.

for the out-of-phase NNM. An inspection of the analytical expressions demonstrates that
this term is perfectly balanced for the in-phase NNM when linear stiffness coefficients are
equal to 1 whereas it is strictly positive for the out-of-phase NNM (see [145]).

The polynomial expansion is then extended to fifth order. The coefficients are listed
in Table 1.2. For this new expansion, the 18 lower-order coefficients do not need to be
recalculated. The computation of the 22 new coefficients, i.e., 10 for the fourth-order terms
and 12 for fifth-order terms, is also sequential. Similarly to quadratic coefficients, quartic
coefficients are all zero as there is no even nonlinearity a10 = ... = a14 = b10 = ... = b14 = 0.
The corrections brought by the fifth-order terms are also small as the coefficients are one
or two orders of magnitude lower than cubic and linear coefficients. Furthermore, they
are still characteristic of a synchronous motion.

Figure 1.10 illustrates the accuracy of the polynomial expansion for the first NNM. In
particular, Figures 1.10(a, b) represent the slave coordinates X2(u, v) and Y2(u, v) for the
third-order (light blue) and the fifth-order (dark blue) approximations. For conservative
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systems, the “exact” manifolds can be computed using the numerical continuation tech-
nique developed in [120] by gathering in phase space all the computed periodic orbits.
This reference manifold is plotted in orange for comparison with the series expansion.
Around the origin and for a region of unit radius, the three surfaces are almost flat and
appear similar. At higher amplitudes, the third- and fifth-order approximations deviate
from the reference, but a good matching is preserved along the zero-velocity line and, to
a slightly lesser extent, along the zero-displacement line. The larger discrepancies are ob-
served at the corner of the domain, where the fifth-order approximation actually provides
a worste approximation of the manifold than at third order.

In Figures 1.10(c – f), results accuracy is investigated using the system’s dynamics. Specif-
ically, the equations governing the modal dynamics (i.e., the dynamics on the invariant
manifold) are integrated over time using a fourth-order Runge-Kutta method. The modal
time series are then projected back to the physical space using Equations (1.15). The
initial conditions (ICs) in physical space are then considered for a second time integration
of the full system of equations of motion (Equations (1.29)). The resulting time series are
displayed in Figures 1.10(c – d) for intermediate-amplitude and in Figures 1.10(e – f) for
high-amplitude ICs. Third- and fifth-order approximations are presented in the left and
right columns, respectively. A more quantitative comparison of the time series is achieved
using the normalized mean-square error (NMSE):

NMSE(x) =
100
Sσ2

x̃

S
∑

i=1

(x̃(i) − x(i))2, (1.31)

where x is the time series to be compared to the reference time series x̃, S is the number
of samples and σ2

x̃ is the variance of the reference time series. A NMSE value of 1% is
commonly assumed to reflect excellent concordance between time series.

NMSE values for all ICs are reported in Table 1.3. Note that additional low-amplitude ICs
are also considered. For low and intermediate ICs, the dynamics is in perfect agreement
with the reference and the fifth-order expansion further improves the matching. Boivin
et al. showed that, for systems where the lowest nonlinearity is of order Q, the dynamic
is accurate to order (N ′ +Q− 1) where N ′ is the order of approximation of the invariant
manifold. For general nonlinearities, this means that the approximation of the dynamics
is accurate, at least, to one order higher than the manifold itself, and two orders higher in
the case of purely odd nonlinearities [17, 18]. The accuracy generally decreases with the
amplitude. For high ICs, a reasonable agreement is observed for the third-order expansion,
but the approximation fails at fifth order. This confirms the previous visual inspections of
the invariant manifold. This behavior is typical of series expansion methods for which the
approximation is improved inside the convergence domain but may diverge faster outside
the convergence domain when the expansion order is increased.

One should note that, although NMSE provides an objective indicator for comparing the
times series, it has the disadvantage to penalize more frequency errors than amplitude
errors (i.e., 1% of error in amplitude or frequency does not give similar NMSE values).
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Figure 1.10: Validation of the polynomial expansion for the in-phase NNM. (a, b) Invariant
manifold X2 and Y2 in phase space (light blue: 3rd order, dark blue: 5th order, and
orange: numerical continuation). (c – d) Dynamics on the invariant manifold (black)
and for the full system (red) with intermediate-amplitude ICs and third- and fifth-order
approximations, respectively. (e – f) Dynamics with high-amplitude ICs.
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Initial conditions NMSE(u(t))[%] NMSE(v(t))[%] NMSE(X2(t))[%] NMSE(Y2(t))[%]
3rd order
(u, v) = (0.1,0) 10−10 10−10 10−10 10−10

(u, v) = (1,0) 3 × 10−2 3 × 10−2 3 × 10−2 3 × 10−2

(u, v) = (2,0) 4 5 4 4
5th order
(u, v) = (0.1,0) 10−11 10−11 10−11 10−11

(u, v) = (1,0) 2 × 10−10 2 × 10−10 2 × 10−10 2 × 10−10

(u, v) = (2,0) 23 24 22 20

Table 1.3: Quantitative comparison between the conservative dynamics on the in-phase
NNM and for the full system. Third- and fifth-order approximations are considered for
low-, intermediate-, and high-amplitude initial conditions (0.1,0), (1,0), (2,0), respectively.

Initial conditions NMSE(u(t))[%] NMSE(v(t))[%] NMSE(X2(t))[%] NMSE(Y2(t))[%]
3rd order
(u, v) = (0.1,0) 10−9 10−9 10−9 10−9

(u, v) = (1,0) 0.3 0.3 0.3 0.3
(u, v) = (2,0) 5.8 5.5 49.8 48.5

5th order
(u, v) = (0.1,0) 10−12 10−12 10−12 10−12

(u, v) = (1,0) 6 × 10−4 6 × 10−4 7 × 10−4 8 × 10−4

(u, v) = (2,0) 1.6 1.4 6.7 9.0

Table 1.4: Quantitative comparison between the conservative dynamics on the out-of-
phase NNM and for the full system. Third- and fifth-order approximations are considered
for low-, intermediate-, and high-amplitude initial conditions (0.1,0), (1,0), (2,0), respec-
tively.

Figure 1.11 presents the results for the out-of-phase NNM. Contrary to the in-phase
NNM, the overall match between the approximations and the reference is less accurate.
Both approximations of the invariant surface appear to be good at high velocity but
for relatively small displacements. The fifth-order approximation improves the NNM
approximation for all ICs considered (cf. Table 1.4). In Figure 1.11(e), there exists
however a strong qualitative and quantitative difference between the dynamics of the
reduced and full systems. It is explained by the rough approximation of the manifold in
this region. At third order, harmonics arising from the cubic components in the expansion
are present in the time series. At fifth order, these harmonics are removed by the fifth-
order terms that all possess a negative sign.

Finally, the analysis of the conservative case is concluded by investigating the reproduc-
tion of the FEP using the reduced dynamics given by Equations (1.18). The FEPs are
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Figure 1.11: Validation of the polynomial expansion for the out-of-phase NNM. (a, b)
Invariant manifold X2 and Y2 in phase space (light blue: 3rd order, dark blue: 5th order,
and orange: numerical continuation). (c – d) Dynamics on the invariant manifold (black)
and for the full system (red) with intermediate-amplitude ICs and third- and fifth-order
approximations, respectively. (e – f) Dynamics with high-amplitude ICs.
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computed using continuation with the frequency as parameter. The FEP for the in-
phase and the out-of-phase NNM are given in Figures 1.12(a) and (b), respectively. The
comparison with the curves computed in Section 1.3 (in black) confirms the previous ob-
servations. For the first NNM, the fifth-order expansion barely improves the accuracy for
low amplitudes (i.e., energy) and fails at higher amplitudes. Conversely, for the second
NNM, the fifth-order expansion increases the validity range of the expansion. Overall, the
polynomial approximations of both modes remain however limited to weakly nonlinear
regimes of motion.

Nonconservative Case

In this section, linear damping is introduced into the 2DOF system with the following
parameters: c1 = 0 and c2,3 = 0.3. The coefficients describing the geometry of the
manifolds at fifth order are given in Table 1.5. The findings are similar to the conservative
case. In particular, in the absence of even nonlinearity, quadratic and quartic coefficients
are all zero. Due to the non-proportionality of the damping, the linear coefficients defining
the LNM have changed from the underlying conservative case. Moreover, the coefficients
(a9, a20, b9, b20) are non-zero which clearly indicates a phase difference between the two
masses of the system. Finally, the strong character of the damping has only slightly
affected the non-zero coefficients already present in the conservative case and the new
coefficients are generally small.

Coeff.
In-phase Out-of-phase

Coeff.
In-phase Out-of-phase

NNM NNM NNM NNM
a1 0.9471 −1.1056 b1 0.1401 0.4599
a2 −0.1386 −0.1550 b2 0.9676 −0.9891
a6 0.1554 0.0327 b6 0.0531 0.2088
a7 −0.0074 −0.0492 b7 0.0244 0.1991
a8 0.2191 −0.0110 b8 0.0768 0.0821
a9 −0.0627 −0.0187 b9 0.2455 0.0324
a15 0.0127 0.0089 b15 0.0131 −0.0187
a16 −0.0128 0.0129 b16 0.0409 −0.0260
a17 −0.0591 0.0116 b17 0.0037 −0.0225
a18 0.0101 0.0087 b18 −0.0810 −0.0113
a19 0.0018 0.0021 b19 0.0104 −0.0030
a20 −0.0065 0.0009 b20 0.0052 −0.0008

Table 1.5: Coefficients of the fifth-order expansion describing in-phase and out-of-phase
NNMs for the nonconservative system.

The accuracy of the approximation of the out-of-phase NNM is now discussed. The invari-
ant manifolds calculated at the third (light blue) and fifth orders (dark blue) are compared
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Figure 1.12: Frequency-Energy plot of the 2DOF system (1.1). (a) In-phase NNM; (b)
out-of-phase NNM. Black: reference from the continuation of the full system of equations
of motion, red and blue: third- and fifth-order expansions, respectively.
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Initial conditions NMSE(u(t))[%] NMSE(v(t))[%] NMSE(X2(t))[%] NMSE(Y2(t))[%]
3rd order
(u, v) = (0.1,0) 10−9 10−9 10−9 10−9

(u, v) = (1,0) 3 × 10−2 10−2 3 × 10−2 2 × 10−2

(u, v) = (2,0) 3.9 1.5 4.6 2.3
5th order
(u, v) = (0.1,0) 10−9 10−9 10−9 10−9

(u, v) = (1,0) 2 × 10−4 2 × 10−4 2 × 10−4 2 × 10−4

(u, v) = (2,0) 0.3 0.1 0.6 0.3

Table 1.6: Quantitative comparison between the nonconservative dynamics on the out-of-
phase NNM and for the full system. Third- and fifth-order approximations are considered
for low-, intermediate-, and high-amplitude initial conditions (0.1,0), (1,0), (2,0), respec-
tively.

in Figure 1.13 to a reference manifold computed using the method developed in Chap-
ter 3. Contrary to the conservative case, the invariant surface is almost flat throughout
the domain, and its inclination confirms the nonproportional character of the damping.
The overall aspect of the invariant manifold is well captured by both approximations.
The larger discrepancies occur when the master displacement and velocity are maximum
and of the same sign. However, using visual inspection, it is difficult to determine if the
fifth-order approximation improves the third-order solution at higher amplitudes. The
computation of time series for the full and reduced systems shows that there is in fact
an improvement for all tested ICs. This is illustrated in Figures 1.13(c – f). The NMSE
values of the time series are reported in Table 1.6. For ICs similar to the conservative
case, the NMSE values appear smaller.

Discussion

The analytical approach proposed by Shaw and Pierre [145] was considered in this section
to obtain a description of a NNM as a polynomial series. The method is applicable
to both conservative and nonconservative systems and proved to be accurate for low to
intermediate vibration amplitudes. However, the method presents also some limitations.
In particular, for a given vibration amplitude, the introduction of higher-order terms in
the approximation does not guarantee an improvement of the results. The convergence
domain of the expansion is a priori unknown. Moreover, increasing the expansion order
reflects into additional analytical calculations and implementation efforts [123]. Finally, as
for all series expansions, the choice of the expansion variables is critical. It was mentioned
in [145] that the expansion can fail, for instance, in the case of localization. In this
situation, some coefficients become too large indicating a failure of the series development.
The expansion has thus to be considered in terms of other variables.
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Figure 1.13: Validation of the polynomial expansion for the out-of-phase NNM. (a, b)
Invariant manifold X2 and Y2 in phase space (light blue: 3rd order, dark blue: 5th order,
and orange: method presented in Chapter 3). (c – d) Dynamics on the invariant manifold
(black) and for the full system (red) with intermediate-amplitude ICs and third- and
fifth-order approximations, respectively. (e – f) Dynamics with high-amplitude ICs.
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1.6 Numerical Resolution of the Manifold-Governing

PDEs

Numerical methods were introduced with the objective of addressing the limitations of
analytical methods. This section briefly reviews the contributions existing in the litera-
ture.

1.6.1 A Galerkin-Based Approach

The first attempt to carry out numerical computation of PDEs (1.17) is that of Pesheck
et al. [126]. Equations of motion were first written in modal space as

η̈ + Zη̇ + Ωη = f̂(η, η̇) (1.32)

and where η is the vector of normalized modal coordinates, Z the modal damping matrix,
and Ω the modal stiffness matrix. f̂(η, η̇) is the nonlinear force vector projected onto the
linear modal basis. Following the same two-dimensional parameterization of the invariant
surface as in Section 1.4.2, a pair of master variables (ηk, η̇k) is chosen and the remaining
coordinates are described in terms of this pair. An additional transformation into polar
coordinates is used to define the master pair into amplitude a and phase φ variables:

ηk = a cosφ, η̇k = aωk sinφ. (1.33)

The constraint relations are

ηi = Pi(a, φ), η̇i = Qi(a, φ), i = 1, ..., N ; i 6= k. (1.34)

The manifold-governing PDEs are

Qi =
∂Pi

∂a
af̃k sinφ+

∂Pi

∂φ

(

ωk + f̃k cosφ
)

,

−2ζiωiQi − ω2
i Pi + f̂i =

∂Qi

∂a
af̃k sinφ+

∂Qi

∂φ

(

ωk + f̃k cosφ
)

, (1.35)

where f̃k = −
(

f̂k

aωk
+ 2ζkωk sinφ

)

and i = 1, ..., N ; i 6= k [126]. The phase-amplitude
formulation allows to approximate the functional Pi and Qi with double expansion series

Pi(a, φ) =
Na
∑

l=1

Nφ
∑

m=1

C l,m
i Tl,m(a, φ), Qi(a, φ) =

Na
∑

l=1

Nφ
∑

m=1

Dl,m
i Ul,m(a, φ), (1.36)

where the functions Tl,m and Ul,m are global shape functions. They can be split into
amplitude (i.e., polynomial) and phase (i.e., harmonic) contributions as

Tl,m(a, φ) = Ll(a) cos((m− 1)φ), Ul,m(a, φ) = Ll(a) sin(mφ) (1.37)
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and where Ll(a) are orthogonal polynomials functions [126]. Introducing Equations (1.36)
into the PDEs (1.35) and using a Galerkin projection [126] based on the individual shape
functions gives the discretized system

∫

a,φ
Up,q



−a
∑

l,m

Dl,m
i Ul,m +

∑

l,m

C l,m
i

∂Tl,m

∂a
f̃ka

2 sinφ+

∑

l,m

C l,m
i

∂Tl,m

∂φ

(

aωk + f̃k cosφ
)



 dadφ = 0,

(1.38)

∫

a,φ
Tp,q



2ζiωia
∑

l,m

Dl,m
i Ul,m + ω2

i a
∑

l,m

C l,m
i Tl,m − af̂i+

∑

l,m

Dl,m
i

∂Ul,m

∂a
f̃ka

2 sinφ+
∑

l,m

Dl,m
i

∂Ul,m

∂φ

(

aωk + f̃k cosφ
)



 dadφ = 0,

(1.39)

where p = 1, ..., Na and q = 1, ..., Nφ. Eventually, the set of 2(N −1)NaNφ highly-coupled
and highly-nonlinear algebraic equations is solved using Newton-like methods. Pesheck’s
method clearly eliminates a number of problems associated with the local polynomial
approximation of the manifold. In particular, the accuracy of the results is now only
reduced to a computational effort and guaranteed in the computational domain.

The method was at first computationally too demanding. The formulation was thus
improved by considering simpler (linear) shape functions along a [123]. The method
was simultaneously generalized to consider piecewise-linear nonlinearities [65] and forced
systems [67]. Interestingly, to the best of our knowledge, the method was applied to
damped systems only in a single study [96].

1.6.2 A Transport Method

More recently, Blanc et al. [13] proposed a new method for solving the manifold-governing
PDEs. Using a similar modal and polar coordinate transformations as Pesheck et al., the
PDEs were written as a transport problem:

V∇Pi = Qi,

V∇Qi = f̂i − ω2
i Pi, i = 1, ..., N ; i 6= k, (1.40)

where ∇ is the gradient operator and V = (ȧ, φ̇) a velocity vector with:

ȧ = −fk sinφ
ωk

, φ̇ = ωk − fk cosφ
aωk

. (1.41)

To solve the transport PDEs in a domain (a, φ) =]0, A[×]0, 2π[, boundary conditions
(BCs) are imposed along the zero-phase boundary and are iteratively modified to obtain
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the continuity of the manifold: Pi(a, 0) = Pi(a, 2π) and Qi(a, 0) = Qi(a, 2π) ∀i 6= k [13].
Suitable BCs are also specified at the boundary a = A.

For a 2DOF system, the problem of finding the suitable BCs at φ = 0 was written as a
minimization problem [13]:

J(P0, Q0) =
1
2

∫ A

0

[

(P (a, 2π) − P0)2 + (Q(a, 2π) −Q0)2
]

da (1.42)

where P0 = P (a, 0), Q0 = Q(a, 0) and where P (a, 2π) and Q(a, 2π) are the solution of the
transport problem for (P0, Q0) as initial conditions. Note that the index i was omitted
as, for a 2DOF system, there is only one unknown displacement and velocity field.

The transport problem was solved on a regular grid over the domain and using an off-
centered finite difference (FD) scheme which starts at φ = 0 and progresses toward in-
creasing values of φ [13]. At a phase line n, the partial derivative of P (similarly of Q) in
the amplitude direction was:

(

∂P

∂a

)

(am, φn) ≈ Pm
n − Pm−1

n

δa
if V n,m

a > 0, (1.43)
(

∂P

∂a

)

(am, φn) ≈ Pm+1
n − Pm

n

δa
if V n,m

a < 0, (1.44)

at point (am, φn). The choice of the discretization according to the direction of the
velocity is classical for transport problems. We refer to [13] for additional details about
the discretization scheme.

Eventually, the Jacobian matrix of the optimization problem was obtained by the method
of the adjoint state [13, 99] and the problem was solved using a Newton-like method.
Interestingly, the first guess of the solution was determined using an asymptotic approxi-
mation of the invariant manifold [153].

Thanks to its solid theoretical foundations, the method accurately computes the geometry
of the invariant manifolds defining NNMs. Obtained NNMs were then used for the purpose
of building reduced-order models. However, in the absence of shape functions (as in
the Galerkin-based approach), the method does not have a direct interpolation basis for
computing the dynamics on the invariant manifold. Such basis was computed a posteriori
by fitting the collection of points of the FD discretization. As of now, the method is not
applicable to nonconservative systems and has to be extended, as discussed in [13]. In
particular, the definition of appropriate BCs at a = A appears problematic.

1.7 Concluding Remarks

NNMs offer a solid and useful theoretical framework for addressing the nonlinear dynamics
of engineering structures. Their properties allow, for instance, to observe the evolution of
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the frequency of a mode as the energy of initial conditions varies, and thus to determine
whether a mode is nonlinear or not. NNMs can also explain nonlinear phenomena that
are unexplainable from a linear viewpoint as, e.g., modal interactions. Finally, NNMs are
also interesting for practicing engineers because they have a clear conceptual relation with
LNMs. In particular, among other things, NNMs represent the structural deformation at
resonance.

In the conservative framework, the definition of NNMs as non-necessarily synchronous pe-
riodic oscillations is particularly appealing when targeting their computation. Although
there now exist sophisticated methods to compute NNMs, their application to complex,
strongly nonlinear, real-life structures is not yet well-established. The algorithm com-
bining shooting and pseudo-arclength continuation that was presented in Section 1.4.1
will address such a structure in Chapter 2, paving the way for a practical application of
NNMs.

In the nonconservative framework, NNMs are viewed as two-dimensional invariant mani-
folds in phase space. This definition is the common denominator to several formulations
for NNMs of damped systems (see Section 1.4.2). In Section 1.5.2, we focused on the ap-
proach presented by Shaw and Pierre, and we studied the PDEs governing the manifold’s
geometry. We believe that invariant objects play a key role in the study of dynamical sys-
tems, and that solving the PDEs to obtain the manifold’s geometry will allow to progress
in the theoretical understanding of NNMs. Moreover, this approach opens up new possi-
bilities for developing geometrical methods to compute and interpret NNMs (as we shall
see in Chapter 6). Finally, from a practical point of view, the constraint relations defining
the NNM geometry offer a straightforward reduction of the system’s dynamics.

The PDE solutions were first approximated analytically using polynomial series. The
method is accurate only for weakly nonlinear regimes of motion and suffers from the
generic issues of series expansions. In Section 1.6, the two existing contributions for
numerically solving the PDEs governing NNMs were reviewed.

In conclusion, computing NNMs for nonconservative systems remains a challenging task.
Although the mathematical framework exists, there is a need for computational methods
that can accurately and effectively solve the corresponding set of PDEs when damping is
present. Chapter 3 addresses this challenge and proposes a rigorous finite-element-based
method for computing NNMs of general nonconservative systems.





Chapter 2

Nonlinear Dynamics and Undamped
NNMs of a Full-Scale Spacecraft

Abstract

This chapter investigates the dynamics of a real-life satellite structure pos-
sessing a strongly nonlinear component. Based on the results of a test cam-
paign carried out in collaboration with EADS-Astrium and LMS, a mathe-
matical model of the spacecraft is built for gaining additional insight into
the nonlinear phenomena that were observed experimentally. Forced/unforced,
damped/undamped numerical simulations are carried out using numerical con-
tinuation techniques and the nonlinear normal modes of the system are carefully
analyzed.

41
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2.1 Introduction

It is widely accepted that virtually all engineering structures are nonlinear, at least in
certain regimes of motion. Even if the common industrial practice is to ignore nonlinearity,
a recent trend is to consider or even utilize nonlinear components during the design
process. Addressing nonlinearity is however a challenging task in view of the numerous
phenomena that nonlinear systems can exhibit. The last decade witnessed important
progress in this direction and more particularly in the analysis of nonlinear aerospace
structures. Substantial efforts were made to address the numerical modeling of complex
nonlinear aerospace structures (see, e.g., [93, 127]). Analysis using advanced numerical
continuation techniques was also carried out in [78, 164].

Despite this increasing interest, very few studies attempted to numerically analyze and
experimentally compare the dynamics of a real-life structure in strongly nonlinear regimes
of motion. Additionally, there are very few contributions where nonlinear normal modes
(NNMs) are computed to analyze the dynamics of large-scale systems. Consequently,
most practicing engineers still view NNMs as a concept that is foreign to them.

To bridge this gap, this chapter is concerned with the study of the SmallSat spacecraft,
which possesses a nonlinear component with multiple axial and lateral mechanical stops.
A mathematical model of the satellite is identified using measurements collected during
a typical qualification test campaign. A detailed finite element model of the underlying
linear satellite is first built in Section 2.2 and reduced using the Craig-Bampton tech-
nique. The model identified experimentally for the nonlinear vibration isolation device is
incorporated into the finite element model in Section 2.3. The nonsmooth nonlinearities
in the model are regularized for facilitating the ensuing numerical simulations. Section 2.4
provides the numerical evidence of some of the phenomena observed experimentally. A bi-
furcation analysis then reveals the existence of quasiperiodic regimes of motion. Finally,
Section 2.5 studies the dynamics of the spacecraft using NNMs. The nonlinear modal
analysis of the SmallSat spacecraft is carried out, and several nonlinear modes exhibiting
nonlinear modal interactions and energy localization are discussed in great detail. The
direct correspondence with experimental observations demonstrates that NNMs provide
a useful framework for addressing real-life systems. The conclusions of this chapter are
drawn in Section 2.6.

2.2 The SmallSat Spacecraft Structure

The SmallSat structure was conceived by EADS-Astrium as a low-cost platform for small
satellites in low earth orbits [139]. It is a monocoque tube structure which is 1.2 m in
height and 1 m in width. It is composed of eight flat faces for equipment mounting
purposes, creating an octagon shape, as shown in Figure 2.1(a). The octagon is manufac-
tured using carbon-fiber-reinforced plastic by means of a filament winding process. The
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structure thickness is 4 mm with an additional 0.25-mm-thick skin of Kevlar applied to
both the inside and outside surfaces to provide protection against debris. The top floor
is an 1-m2 sandwich aluminum panel, with 25-mm core and 1-mm skins. The interface
between the spacecraft and the launch vehicle is achieved via four aluminum brackets lo-
cated around cut-outs at the base of the structure. The total mass including the interface
brackets is around 64 kg.

Dummy
inertia
wheel

SASSA
devices

Dummy
telescope

WEMS
device

Main structure

(a) (b)

X

Z

SmallSat

Inertia wheel

Bracket

Metallic
cross

Filtering
elastomer plot

Mechanical
stop

Figure 2.1: SmallSat spacecraft equipped with an inertia wheel supported by the WEMS
and a dummy telescope connected to the main structure by the SASSA isolators. (a)
Photograph; (b) schematic of the nonlinear vibration isolation device.

The spacecraft structure supports a dummy telescope mounted on a baseplate through a
tripod; its mass is around 140 kg. The dummy telescope plate is connected to the SmallSat
top floor by three shock attenuators, termed shock attenuation systems for spacecraft and
adaptor (SASSAs) [22], whose dynamic behavior may exhibit nonlinearity. Besides, as
depicted in Figure 2.1(b), a support bracket connects to one of the eight walls the so-
called wheel elastomer mounting system (WEMS) which is loaded with an 8-kg dummy
inertia wheel. The WEMS acts as a mechanical filter which mitigates high-frequency
disturbances coming from the inertia wheel through the presence of a soft elastomeric
interface between its mobile part, i.e., the inertia wheel and a supporting metallic cross,
and its fixed part, i.e., the bracket and by extension the spacecraft. Moreover, the WEMS
incorporates eight mechanical stops, covered with a thin layer of elastomer, and designed
to limit the axial and lateral motions of the inertia wheel during launch, which gives rise
to strongly nonlinear dynamical phenomena (cf. Section 2.3).
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2.2.1 Finite Element Modeling of the Underlying Linear Satel-
lite

A finite element model (FEM) of the SmallSat satellite created in the LMS-SAMTECH
SAMCEF software is used in the present study to conduct numerical experiments. It
comprises about 150,000 degrees of freedom (DOFs). The model idealizes the composite
tube structure using orthotropic shell elements. The top floor, the bracket, and the wheel
support are also modeled using shell elements. Boundary conditions are enforced at the
base of the satellite through 4 clamped nodes. Proportional damping using the parameters
provided by EADS-Astrium is also introduced in the model.

The typical frequency range of interest for spacecraft testing is between 5 and 100 Hz.
Within this frequency interval, the model comprises 18 linear modes that can be classified
into three groups of six modes, as listed in Table 2.1. The first group, between 8 Hz and
29 Hz, shows local WEMS motions. The corresponding modal shapes are depicted in
Figure 2.2. Modes 1 and 2 show a concave trajectory of the WEMS about Y and X axes,
respectively. Modes 3 and 5 correspond to a convex trajectory of the WEMS about Y
and X axes, respectively. The fourth mode presents an in-plane rotation and extension of
the WEMS cross. Only mode 6 combines a significant bracket deflection with a vertical
WEMS motion. The second group, between 32 and 58 Hz, is composed of local SASSA
modes including global deformation of the main structure. The last group comprises
modes with local deformation of the main structure panels often combined with bracket
deformation.

To monitor the integrity of the structure between each qualification run, low-level ran-
dom data were acquired throughout the test campaign. Specifically, this was performed
considering axial white-noise excitations filtered in 5 – 100 Hz and driven via a base ac-
celeration of 0.001 g2/Hz. The low-level time series were exploited to identify the linear
modal properties of the spacecraft, utilizing transmissibility functions (TFs) as no force
measurement was available at the shaker-to-structure interface. This analysis is carried
out using the frequency-domain subspace algorithm derived in reference [105]. The re-
sulting estimates of the resonance frequencies of the spacecraft are also given in Table 2.1.
We refer to [115] for more details about the experimental identification.

We note that a formal model updating process could not be achieved during the test
campaign. Bringing the predictions of the model in very close quantitative agreement
with the experimental results was therefore not the objective. Nonetheless, the good
agreement in Table 2.1 between the natural frequencies predicted by the FEM and those
identified experimentally together with the correct mode ordering confirm that the model
should have satisfactory predictive capabilities.
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Mode # Model frequency [Hz] Experimental frequency [Hz]
1 8.06 8.19
2 9.14 –
3 20.44 –
4 21.59 –
5 22.05 20.18
6 28.75 22.45
7 32.49 –
8 34.78 34.30
9 39.07 –
10 40.78 43.16
11 45.78 45.99
12 57.76 55.71
13 68.99 64.60
14 75.14 –
15 79.82 –
16 83.36 –
17 89.01 88.24
18 95.30 –

Table 2.1: Comparison between numerical and experimental natural frequencies. A dash
means that the corresponding mode could not be identified during the test campaign.

2.2.2 Reduced-Order Modeling

Because the WEMS nonlinearities are spatially localized, condensation of the linear FEM
can be effectively achieved using the Craig-Bampton reduction technique [7]. This leads
to a substantial decrease in the computational burden without degrading the accuracy
of the numerical simulations in the frequency range of interest. The Craig-Bampton
method expresses the complete set of initial DOFs in terms of retained DOFs and internal
vibration modes of the structure clamped on the retained nodes. To introduce the WEMS
nonlinearities, the reduced-order model (ROM) is constructed by keeping one node on
both sides of the lateral and axial mechanical stops. In total, eight nodes of the initial
FEM possessing 3 DOFs each and 10 internal modes of vibration are kept; this reduced
model possesses 34 DOFs and is termed ROM810. For local excitation of the WEMS, a
second ROM, termed ROM910, is created with an additional node on the metallic cross.

The ROM accuracy is assessed by comparing its modal parameters with those of the
original full-scale model. The deviation between the mode shapes is determined using the
modal assurance criterion (MAC). MAC value ranges from 0 in the absence of correlation
to 1 for a complete correspondence. The frequency deviations as well as the MAC of
ROM810 are displayed in Figure 2.3. We observe a very good correlation for the first 18
modes which cover the frequency range of interest.
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(1) (2) (3)

(4) (5) (6)

Figure 2.2: Close-up of the six first LNMs (local WEMS motion). (1 – 6) for LNM 1 to
LNM 6, respectively.
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Figure 2.3: Relative error on frequencies and MAC between the ROM810 and the original
model.
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2.3 Modeling of the WEMS Nonlinearities

The identification of the SmallSat’s nonlinear components is performed using measure-
ments collected during a typical qualification test campaign which consisted of swept-sine
base excitations applied to the spacecraft for different amplitude levels, sweep rates and
directions. Two specific data sets measured under 0.6 g and 1 g axial loadings and for
positive sweep rates of 2 and 4 octaves per minute, respectively, are exploited.

Across the structure, the WEMS appears as the strongest nonlinearity source. Fig-
ure 2.4(a) illustrates the axial relative displacement between the WEMS cross and its
support for data measured at 1 g. One remarks the clear skewness and nonsmoothness
of the envelope of oscillations, which exhibits a sudden transition from large to small
amplitudes of vibration, referred to as a jump phenomenon. This envelope also presents a
significant asymmetry entailing larger amplitudes of motion in positive displacement, and
a discontinuity in slope for negative displacements around 7.5 Hz. Figure 2.4(b) shows
the wavelet transform of the time series presented in Figure 2.4(a). The presence of a
wideband frequency, including strong harmonics, confirms the strongly-nonlinear charac-
ter of the WEMS. The presence of even harmonics and the sudden disappearance of the
wideband content also indicates a nonsmooth character of the nonlinearity.

Figure 2.5 presents a simplified, yet relevant, modeling of the WEMS where the inertia
wheel, owing to its important rigidity, is seen as a point mass. The four nonlinear connec-
tions (NCs) between the WEMS mobile and fixed parts are labeled NC1–4, respectively.

Once nonlinear components are located, the identification procedure addresses the char-
acterization and the parameter estimation of the nonlinearity. Both steps are performed
using the restoring force surface (RFS) method. Based exclusively on measured signals,
the RFS was first introduced in [103] and is covered in great detail in the textbook [166].
It serves commonly as a parameter estimation technique. However, the RFS method is
used beforehand in an unconventional manner for nonlinearity characterization purposes.
The starting point is Newton’s law of dynamics written for a specific degree of freedom
located next to a nonlinear structural component, namely

N
∑

n=1

mi,n ẍn + fi(x, ẋ) = pi (2.1)

where i is the DOF of interest, N the number of DOFs in the system, mi,j the mass matrix
elements, x, ẋ and ẍ the displacement, velocity and acceleration vectors, respectively, f
the restoring force vector encompassing elastic and dissipative effects, and p the external
force vector. The key idea of the approach is to discard in Equation (2.1) all the inertia
and restoring force contributions that are not related to the nonlinear component, as
they are generally either unknown, e.g., the coupling inertia coefficients, or not measured,
e.g., the rotational DOFs. If we denote by j another measured DOF located across the
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Figure 2.4: Analysis of the relative displacement across the WEMS cross and its support.
(a) Time series at 1 g. (b) Wavelet transform of the relative displacement in (a).

nonlinear connection, Equation (2.1) is therefore approximated by

mi,i ẍi + fi(xi − xj, ẋi − ẋj) ≈ pi. (2.2)

If no force is applied to DOF i, a simple rearrangement leads to

fi(xi − xj, ẋi − ẋj) ≈ −mi,i ẍi. (2.3)
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Figure 2.5: WEMS. Simplified modeling of the WEMS mobile part considering the inertia
wheel as a point mass. The linear and nonlinear connections between the WEMS mobile
and fixed parts are signaled by squares and circles, respectively.

Equation (2.3) shows that the restoring force of the nonlinear connection is approximately
proportional to the acceleration at DOF i. Hence, by simply representing the acceleration
signal, with a negative sign, measured at one side of the nonlinear connection as a function
of the relative displacement and velocity across this connection, the nonlinearities can be
conveniently visualized and an adequate mathematical model for their description can
then be selected. This methodology was already successfully applied to the characteriza-
tion of the nonlinearities at the wing tip of the MS-760 Morane Saulnier aircraft [74] and
in the wing-to-payload interfaces of an F-16 aircraft [116].

To visualize the elastic nonlinearities of the WEMS device, a cross section along the
axis where the velocity is zero of the restoring force surface defined by the triplets
(xi,k − xj,k, ẋi,k − ẋj,k, −ẍi,k), where k refers to the k-th sampled instant, can be drawn.
Figures 2.6(a, b) show the plots corresponding to NC1 at 0.6 g and 1 g, respectively.
These figures confirm the nonsmooth and asymmetric nature of the nonlinearities in the
system. Visual inspection estimates the – Z clearance at around 1. The restoring force
curve at 1 g also reveals the activation of the + Z stop, beyond a relative displacement of
about 1.5. For confidentiality, clearances are given through adimensionalised quantities.

Reference [115] demonstrates in detail that the axial equation of motion of the WEMS
mobile part, i.e., the dummy inertia wheel and its metallic cross-shaped support, can be
formulated explicitly by asserting that it behaves as a rigid body. Under this assumption,
the NC stiffness curves are identifiable using the restoring force surface method (RFS).
The restoring-force curves obtained for NC1 and NC2 are depicted in Figure 2.7(a, b),
respectively. As qualitatively shown in Figure 2.6, it turns out that the WEMS modeling
should account for combined nonsmooth and gravity-induced asymmetric effects. This
leads us to select a trilinear model k−, k and k+ with dissimilar clearances a− and a+

for the axial nonlinearities. For the lateral nonlinearities, a bilinear model k± and k
suffices, because there is only one clearance a± per connection. A curve-fitting process,
represented by the red curve in Figure 2.7(a, b), provides the unknown parameters for our
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Figure 2.6: Nonlinearity characterization of the WEMS device using the restoring force
surface method. (a) 0.6 g; (b) 1 g.
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Figure 2.7: WEMS. (a, b) Experimental stiffness curve constructed using the RFS method
(in black) and fitted with a trilinear model (in red) for NC1 and NC2, respectively.

piecewise-linear model (see Table 2.2). For confidentiality, stiffness coefficients are also
given through adimensionalised quantities. Localized damping terms given by EADS-
Astrium were also included in the FEM to account for the dissipation of the elastomer
plots.

Finally, for facilitating the numerical investigations in the forthcoming sections, the conti-
nuity of the first derivative of the different restoring forces of the WEMS is enforced using
regularization. This approach is also motivated by the stiffness curve in Figure 2.7(a),
which reveals that the actual structural behavior is smoother than a piecewise-linear
law. A local regularization using Hermite polynomials in the interval [a− ∆, a+ ∆] is
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Stiffness NC1 NC2 NC4 NC3
Axial kZ 8.30 9.21 9.18 10.03

Lateral kX 1.31 1.31 0.69 0.69
Lateral kY 0.69 0.69 0.69 0.69
Axial k+,Z 79.40 88.41 79.40 88.41
Axial k−,Z 118.07 116.73 118.07 116.73

Lateral k±,XY 40 40 40 40
Clearance
Axial a+,Z 1.55 1.62 1.59 1.59
Axial a−,Z 1.01 0.84 0.93 0.93

Lateral a±,XY 2 2 2 2

Table 2.2: Parameters of the WEMS nonlinear connections (adimensionalised for confi-
dentiality).

considered where a and 2∆ are the clearance and the size of the regularization interval,
respectively. The nominal interval considered throughout the paper is equal to 5% of the
clearance size. As illustrated in Figure 2.8, the main advantage of this strategy is that
it preserves the purely linear behavior of the restoring force outside the regularization
interval.

The mathematical description of the nonlinear force is given by

fnl(x) =































sign(x)(ka+ + k+(x− a+)) x ≥ a+ + ∆+

p+(t(x)) a+ + ∆+ > x > a+ − ∆+

kx a+ − ∆+ ≥ x ≥ −(a− − ∆−)
p−(t(x)) −(a− − ∆−) > x > −(a− + ∆−)
sign(x)(ka− + k−(x− a−)) x ≤ −(a− + ∆−)

(2.4)

where x is the relative displacement between the two DOFs defining the NC. The param-
eters a±, k±, and ∆± are positive scalars. The Hermite polynomials are defined as

p±(t) = h00(t)pk + h10(t)(xk+1 − xk)mk + h01(t)pk+1 + h11(t)(xk+1 − xk)mk+1 (2.5)

where pk and pk+1 are the values of the restoring force at points xk = sign(x)(a− ∆) and
xk+1 = sign(x)(a + ∆), respectively. mk and mk+1 are the values of the restoring force
derivative at the same xk and xk+1 points; they correspond to the stiffness coefficients k1

and k±, respectively. The local scaled abscissa is

t(x) =
x− xk

xk+1 − xk

. (2.6)

The hij(t) functions are given by

h00(t) = 2t3 − 3t2 + 1, (2.7)

h10(t) = t3 − 2t2 + t, (2.8)

h01(t) = −2t3 + 3t2, (2.9)

h11(t) = t3 − t2. (2.10)
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Figure 2.8: Axial WEMS nonlinearity modeling. True piecewise-linear (−) and regularized
(−−) restoring forces.

2.4 Direct Numerical Integration and Numerical Con-

tinuation

The reduced model ROM910 including the WEMS nonlinearities is now used to conduct
numerical simulations. To this end, a swept-sine excitation with a sweep rate of 2 octaves
per minute in the 5 – 90 Hz range is applied to the inertial wheel in the axial direction.
The excitation amplitude is 140 N. Direct numerical integration of the equations of motion
is carried out using Newmark’s algorithm. Figure 2.9(a) represents the axial displacement
of the NC2 as a function of the excitation frequency. A main resonance peak which cor-
responds to mode 6 is located around 33 Hz. Because the corresponding linear natural
frequency is 28.75 Hz, this nonlinear mode undergoes a substantial increase in frequency
due to the frequency-energy dependence of nonlinear oscillations. The asymmetry, non-
smoothness and skewness of the displacement envelope in the vicinity of the resonance
peak are additional manifestations of the WEMS nonlinearities. A sudden transition from
large to small amplitudes of vibration, referred to as a jump phenomenon, is also observed.
After the jump, the satellite response quickly stabilizes to a low-amplitude response with
almost no beating phenomenon; it is a sign of the presence of strong damping. The wavelet
transform of the displacement signal is plotted in Figure 2.9(b). The amplitude of the
wavelet transform is represented in logarithmic scale ranging from blue (low amplitude)
to red (high amplitude). The presence of wideband frequency components around 30 Hz
confirms the activation of nonsmooth nonlinearities in the neighborhood of the resonance.
Their disappearance closely coincides with the jump phenomenon. Even harmonics in the
wavelet transform are generated by the asymmetric modeling of the WEMS. The results
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Figure 2.9: NC2–Z response to swept-sine excitation. (a) Displacement; (b) wavelet
spectrum.

in Figure 2.9 therefore present a very good qualitative concordance with those observed
experimentally for mode 1 in Figure 2.4.

In order to gain further insight into the experimental results, an algorithm for numerical
continuation is employed to compute the system response to a 140 N stepped-sine forcing.
A shooting technique for computing isolated periodic solutions is combined with pseudo-
arclength continuation for tracking the evolution of the periodic solutions for increasing
excitation frequencies [141]. Bifurcation analysis is performed using test functions based
on the monodromy matrix [10, 85]. The theoretical concept are briefly presented in
Appendix A. The results of numerical continuation are shown in Figure 2.10. They are
superimposed on the time series of Figure 2.9(a) and provide an accurate estimation of the
displacement envelope. Two limit point (LP) bifurcations give rise to a change in stability
of the periodic solutions. The bifurcation mechanism is illustrated in Figure 2.11(a). The
eigenvalues of the monodromy matrix, i.e., the Floquet multipliers, are represented in the
real-imaginary plane for several periodic solutions on either side of the bifurcation. The
multiplier that crosses the unit circle through +1 confirms that the periodic solutions
have become unstable through a LP bifurcation. The upper LP coincides with the jump
phenomenon and explains why there is a sudden transition between two stable attractors
characterized by large and small amplitudes, respectively. This is a classical theoretical
result in the literature, often illustrated using single-DOF oscillators, but these simulations
show that it can also be observed during testing of real-life engineering structures.

Another objective of this section is to uncover nonlinear dynamical phenomena not en-
countered experimentally. Interestingly, the numerical continuation process highlights
that the periodic solutions undergo two additional Neimark-Sacker bifurcations [10, 85].
In addition to changing the stability of the periodic solutions, this type of bifurcation
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Figure 2.10: SmallSat displacement response at NC2–Z. The responses to swept-sine (di-
rect simulations, 2 octaves per minute) and stepped-sine (numerical continuation) excita-
tions are depicted in black and red, respectively. The red solid and dashed lines correspond
to stable and unstable periodic solutions, respectively. Limit point and Neimark-Sacker
bifurcations are pictured with green bullets (•) and magenta squares (�), respectively.
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Figure 2.11: Evolution of the Floquet multipliers µi for several periodic solutions along
the continuation path. (a) Evolution across a LP bifurcation; (b) evolution across a NS
bifurcation.

produces an emerging torus on which quasiperiodic (QP) motion may occur. Here, a
pair of (complex conjugate) Floquet multipliers crosses simultaneously the unit circle as
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presented in Figure 2.11(b). Such QP motion was not present in the time series of Fig-
ure 2.9(a). However, numerical simulations for slower sweep rates, e.g., for a linear sweep
rate of 10 Hz per minute as in Figure 2.12, show that QP motion can be observed. The
envelope of the displacement signal increases rapidly after the first Neimark-Sacker bifur-
cation, and periodic motion degenerates into QP motion. After the second bifurcation,
the QP motion is transformed into periodic motion, and the envelope decreases rapidly.
There is a small delay between the first (second) bifurcation and the onset (disappearance)
of QP motion; this delay is to be attributed to the transient character of the swept-sine
excitation. Figure 2.12(b) shows that the time series associated with QP motion also ex-
hibits asymmetric behavior with dominant positive displacements. Overall, this complex,
inherently nonlinear dynamical behavior is of important practical significance, because,
as displayed in Figure 2.12(a), the vibration amplitude associated with QP motion is as
large as the amplitude close to the main resonance of the system.

2.5 Nonlinear Modal Analysis of the SmallSat

In Section 2.4, a nonconservative FEM was utilized to investigate the nonlinear phenom-
ena observed during the test campaign of the SmallSat spacecraft. Because the damped
dynamics can often be interpreted based on the topological structure and the bifurcations
of the NNMs of the underlying conservative system [75], a detailed nonlinear modal anal-
ysis using the underlying conservative model is carried out herein. This approach is also a
usual engineering practice because there is frequently a lack of knowledge about damping
mechanisms present in the structure.

The computation algorithm for NNMs that was presented in Chapter 1 is applied to
the ROM810 model. Unlike the previous application of the NNM theory to the full-
scale aircraft [74], an interesting feature of the satellite is that almost every mode of
the underlying linear system in the 0 – 100 Hz range involves motion of the nonlinear
component. The exception is mode 9 for which the WEMS remains quiescent, as shown
in Figure 2.13(a). This is confirmed by the constant natural frequency of NNM9 in the
FEP of Figure 2.13(b). Modes 1, 5, 6, and 7 were found to exhibit particularly interesting
dynamics and are described in this section.

The first linear normal mode (LNM1) corresponds to a local motion involving the WEMS.
Its nonlinear counterpart is pictured in Figure 2.14. The FEP of NNM1 is formed by
one main backbone to which one “tongue” is attached. At low energies, no mechanical
stop is activated, and the NNM frequency remains identical to the natural frequency
of LNM1. The corresponding modal shape is also identical to that of LNM1. Beyond a
certain energy threshold, the relative displacements along X of nonlinear connections NC1
and NC2 enter into the regularization area of the piecewise-linear restoring forces. The
NNM frequency rapidly increases due to the large difference between the stiffnesses of
the elastomer plots and of the mechanical stops. When progressing along the backbone,
harmonic components of the fundamental NNM oscillation frequency are created by the
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Figure 2.12: Evidence of QP motion. (a) Displacement at NC1–Z and (b) close-up of the
transition from periodic to QP motion. The responses to swept-sine (direct simulations)
and stepped-sine (numerical continuation) excitations are depicted in black and red, re-
spectively. Limit point and Neimark-Sacker bifurcations are pictured with green bullets
(•) and magenta squares (�), respectively.
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Figure 2.13: Mode 9. (a) Linear modal shape; (b) frequency-energy plot.
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Figure 2.14: FEP of the first NNM with different modal shapes inset.
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WEMS nonlinearities. Once one of these harmonics has a frequency close to the oscillation
frequency of another NNM, a dynamic coupling between the two modes exists, and a
tongue of internal resonance is produced. This is precisely what happens for the 5:1
internal resonance in Figure 2.14. As energy increases along this branch, the fifth harmonic
becomes more important than the fundamental frequency. The modal shape located
around the middle of the branch is a mixing between NNM1 and NNM10; it is a purely
nonlinear mode with no linear counterpart. At the extremity, the sole fifth harmonic
remains, which completes the transition to NNM10. Such internal resonances between
NNMs were previously reported in the literature, see, e.g., [75, 94], also in the case of
a two-degree-of-freedom vibro-impact system [95] and a full-scale aircraft [74]. They are
therefore not further described herein. However, it is interesting to note that, due to
nonlinearities, the excitation of a local mode can trigger the excitation of a more global
mode involving instrument panel motion. This latter mode is characterized by a much
larger modal mass and can potentially jeopardize structural integrity during launch.

Figure 2.15 presents the FEP of the fifth spacecraft NNM. The same findings as for
NNM1 can be drawn from this FEP, namely a sudden increase in NNM frequency once
mechanical stops are activated and the presence of internal resonances. One branch of 2:1
internal resonance with NNM11 and two 4:1 branches with NNM17 and 18 are generated
due to the asymmetric modeling of the WEMS. Branches involving even harmonics were
also observed for a system with cubic nonlinearity in [75], but, due to the symmetry
of the restoring force, they were created through symmetry-breaking bifurcations. The
existence of branches 15:1 and 120:1 is questionable, because the corresponding oscillation
frequencies are outside the range of validity of ROM810.

What is particularly interesting with NNM5 is that its 2:1 interaction with NNM11 was
observed experimentally. The experimental evidence is presented in the wavelet transform
of Figure 2.16. At the NC4-Y sensor, the only visible frequency component is around 45-
46 Hz despite the fact that the excitation frequency is twice smaller, a clear sign of an
energy transfer between modes. An important remark is that it is not the experimental
mode with a linear frequency of 22.45 Hz which is involved in the interaction, but rather
the experimental mode with a linear frequency of 20.18 Hz (see Table 2.1). Due to the
hardening effect of the WEMS, the frequency of this latter mode increases up to 22.5-
23 Hz in Figure 2.16, which, in turn, triggers the excitation of the experimental mode
possessing a linear frequency of 45.99 Hz. To the best of our knowledge, this is the
first time that such an agreement between predictions and experiments is reported for
an interaction between two modes of a real-life structure with noncommensurate linear
natural frequencies.

A third local mode of the WEMS, NNM6, is presented in Figure 2.17. As for NNM5, there
is a 2:1 modal interaction during which NNM6 interacts with NNM12 corresponding to an
axial motion of the instrument supporting panel. Numerical evidence of this interaction
is provided by analyzing the response at the instrument panel to swept-sine excitation
in Figure 2.18(a). Damping is included in the numerical simulation. For a forcing am-
plitude of 20 N, the satellite presents several resonance peaks at frequencies equal to the



Chapter 2. Nonlinear Dynamics and Undamped NNMs of a Full-Scale Spacecraft 59

10
−2

10
0

10
2

10
4

22

22.7

23.4

24.1

24.8

Energy [J]

F
re

qu
en

cy
 [H

z]

4:1

120:1

15:1

2:1

4:1

Figure 2.15: FEP of the fifth NNM with different modal shapes inset.
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Figure 2.16: Wavelet transform of the experimental time series measured at NC4–Y
(swept-sine excitation, 1g).
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Figure 2.17: FEP of the sixth NNM with different modal shapes inset.

linear natural frequencies (see Table 2.1). For a forcing amplitude of 80 N, an additional
resonance peak corresponding to an excitation frequency of 29 Hz can be observed. The
presence of this resonance cannot be predicted by a linear analysis, because there is no
linear mode possessing instrument panel motion below 32 Hz. It is therefore a nonlinear
resonance during which the second harmonic of NNM6 characterized by a frequency close
to 58 Hz excites NNM12. This, in turn, produces a large response at the instrument panel
when the excitation frequency is in the vicinity of NNM6. Interestingly, this nonlinear
resonance has an acceleration twice as large as the acceleration corresponding to the linear
resonance of the panel at 58 Hz. We note that Figure 2.18(a) bears strong resemblance
with Figure 2.18(b) where the phenomenon is experimentally observed in accelerations
measured at the instrument panel. Further experimental evidence of the modal interac-
tion is shown in the wavelet transform measured at NC4 in Figure 2.18(c). The excitation
frequency, denoted by fund., is accompanied with higher harmonic components of com-
parable amplitudes. Specifically, a second harmonic ranging from 55 to 60 Hz is visible
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Figure 2.18: Numerical and experimental evidence of the 2:1 modal interaction between
NNM6 and NNM12. (a) Acceleration at the instrument panel for a swept-sine excitation of
20 N (red) and 80 N (black) amplitude (direct numerical simulation); (b) raw experimental
accelerations measured at the instrument panel at 0.1 g (blue) and 1g (black). (c) wavelet
transform of the relative displacement at NC4-Z (measured during the testing campaign).

when the excitation frequency approaches 30 Hz. There is no identified linear mode just
below 30 Hz, but, due to the hardening effect of the WEMS, the linear frequency of 22.45
Hz increases substantially during nonlinear regimes of motion. The second harmonic then
excites the experimental mode with a linear frequency of 55.71 Hz.

The 3:1 modal interaction presents a nonconventional topology compared to the other
branches in the FEP of Figure 2.17. A close-up of the branch is shown in Figure 2.19
together with the backbone of NNM17 represented at the third of its fundamental fre-
quency. The reason for this complex topology is that the dynamics has to evolve from
NNM6, a mode with a predominant axial motion between the WEMS and the bracket
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Figure 2.19: 3:1 interaction between NNM6 and NNM17. (a) Close-up of the internal
resonance branch; (b) motion of the center of gravity of the WEMS cross.

activating a unique axial nonlinear connection, NC2-Z, to NNM17, a mode with lateral
motion of the bracket activating two other nonlinear connections in the lateral direction,
NC3-Y and NC4-Y. To understand this progression, the motion of the center of gravity
of the WEMS cross is displayed in Figure 2.19. Clearly, the WEMS motion takes place in
the XZ plane at points A and B, YZ plane at point E, Y direction at point F, YZ plane at
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NC2-Z (+,–) NC3-Z (+,–) NC4-Z (+,–) NC3-Y (+,–) NC4-Y (+,–)
A (0.2.2) (0,0) (0,0) (0,0) (0,0)
B (0,2.2) (0,0) (0,0) (0,0) (0,0)
C (0,2.2) (0,0.07) (0,0) (0,0) (0,0)
D (0,2.3) (0,0.19) (0,0) (1.1,1.1) (1.1,1.1)
E (0,0) (0,0) (0,2.9) (3.4,3.6) (3.4,3.4)
F (0,0) (0,0) (0,0) (3,3) (3,3)
G (0,0) (0,0) (0,0) (4,4) (4,4)
H (0,0) (0,0) (0,2.7) (3.5,3.8) (3.7,3.7)
I (0,2.1) (0,0) (0,1.0) (0,0) (0,0)
J (0,2.3) (0,0) (0,0) (0,0) (0,0)

Table 2.3: Activation of the nonlinear connections on the 3:1 interaction between NNM6
and NNM17. A zero value indicates that the mechanical stop is not activated. A value
greater than one implies that the regularization interval is crossed. + and – correspond
to positive and negative relative displacements, respectively.

point H and finally back to XZ plane at point J. In addition, Table 2.3 displays the non-
linear connections that are active at the considered points together with the penetration
in the corresponding regularization intervals.

At point A on the backbone of NNM6, the WEMS and the bracket vibrates axially result-
ing in activation of NC2-Z for negative relative displacements. At point B on the internal
resonance branch, the WEMS motion is not significantly affected, but lateral motion of
the bracket in the Y direction is induced. The MAC between NNM6-B and LNM6 is
0.5, a clear sign of the departure from mode 6. At point C, the MAC between NNM6-C
and LNM17 is 0.92 indicating that the transition to NNM17 is well initiated. A second
axial connection (NC3-Z) is activated for negative relative displacements, but there is no
visible frequency increase between points B and C. As indicated in Table 2.3, the reason
is that the motion barely penetrates in the regularization interval of NC3-Z. Conversely, a
sudden frequency increase, which closely follows the evolution of the backbone of NNM17,
is observed between points C and D. This is a nonconventional behavior for an internal
resonance branch. This occurs because the interaction with NNM17 generates lateral mo-
tion of the WEMS, which, in turn, activates two additional lateral connections, NC3-Y
and NC4-Y. At point D, there are therefore 4 active connections. They have an important
influence on the resulting dynamics, because the motion crosses the regularization zones
for three of them. For a complete correspondence with NNM17, the two axial connections
NC2-Z and NC3-Z must remain quiescent. This happens at point E, but NC4-Z has been
activated between points D and E. It is only at point F that the axial connections are no
longer active; the MAC with mode 17 is 0.99. From point F to point J, a reverse scenario
for evolving from NNM17 back to NNM6 is observed in Table 2.3. Axial connections are
again activated, and lateral connections become quiescent. We note that all these results
hold for different sizes of the regularization intervals, as shown in Figure 2.20.
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Figure 2.20: Influence of the size of the regularization interval on the FEP of NNM6. The
nominal interval considered throughout the paper is equal to 5% of the clearance size (-);
(-) 1%, and (-) 10%.

Another interesting nonlinear phenomenon that the SmallSat satellite exhibits is the so-
called localization phenomenon [50, 155, 157] during which new nonlinear modes with
deformation localized to specific components of the structure appear. Figure 2.21 presents
the FEP of NNM 7. Unlike previously described NNMs, NNM7 frequency remains identi-
cal to the linear natural frequency until energies greater than 102 J . Then, the backbone
undergoes a bifurcation and bends backwards. Important modifications of the modal
shapes are observed along the backbone branch. The linear-like modal shape only involves
instrument panel motion. After the bifurcation, a markedly different (MAC<0.5) modal
shape involving significant WEMS motion is produced. Progressing on the backbone, the
WEMS deformation is further enhanced whereas instrument panel motion disappears,
giving rise to a localized mode possessing some similarities with LNM6 (MAC=0.85).
Finally, a motion of the instrument panel, different from the motion at low energy, reap-
pears further on the branch. We note that the localization phenomenon is different from
modal interactions. For instance, very little harmonic components are generated along
the backbone in Figure 2.21.
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Figure 2.21: FEP of the seventh NNM with different modal shapes inset.

Finally, the NNMs computed in the present section are related to the forced continuation
curves discussed in Section 2.4. The satellite response in the vicinity of the sixth resonance
computed through forced numerical continuation is represented in solid line in Figure 2.22.
The external forcing is a stepped sine with different amplitudes, namely 20, 55, 60, 75,
80 and 100 N. In view of the sudden skewness of the resonance peaks, the nonsmooth
character of the WEMS nonlinearities is evident. The frequency-energy dependence of
NNM6 in Figure 2.17 is also depicted in dashed line in Figure 2.22. Clearly, the backbone
branch computed in the undamped, unforced case coincides with the locus of the resonance
peaks of the damped, forced response. This confirms the well-known result that nonlinear
resonances occur in the neighborhood of NNMs [157]. Unlike the backbone branch, the
2:1 modal interaction, represented by a vertical dashed line in Figure 2.22, could not be
reproduced in the forced continuation curves.
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Figure 2.22: Undamped/unforced (dashed line) vs. damped/forced (solid line) response
at the WEMS (NC4-Z) in the vicinity of the sixth resonance.

2.6 Concluding Remarks

In this chapter, the dynamics of a strongly nonlinear aerospace structure was studied. The
application posed several challenges due to the presence of multiple strongly nonlinear
components, closely-spaced modes and relatively high damping. This work revealed that
the complex phenomena usually observed for numerical simulations of low-dimensional
nonlinear systems can also be observed in the experimental conditions commonly endured
by engineering structures in industry. The advanced investigations carried out confirmed
that the satellite can not only exhibit jumps and a rich frequency content, but also a wide
variety of nonlinear phenomena such as quasiperiodic motion and modal interactions.
An important observation is the generic character of interactions between modes with
noncommensurate linear frequencies even for this complex spacecraft. The ability to
understand and reliably predict such interactions is of utmost importance as they may
involve energy transfer between modes and, in turn, jeopardize the structural integrity. A
specific contribution of this work was thus to reproduce with great fidelity interactions that
were observed experimentally. And, overall, a very good qualitative agreement between
numerical and experimental results was obtained.

In summary, the work performed in this chapter demonstrates that there now exist rig-
orous mathematical concepts and effective numerical methods, such as nonlinear normal
modes, numerical continuation and the wavelet transform, for addressing the dynamics of
complex, real-life engineering structures possessing strongly nonlinear components.
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The SmallSat also pointed out some of the remaining challenges for the future develop-
ments of nonlinear modal analysis. In particular, throughout the numerical investigations,
a great number of modal interactions was encountered by the continuation algorithm. As
a result, this complicates the computation of NNMs. For instance, Figure 2.17 shows that
the NNM computation was carried out up to 31.3 Hz whereas the time simulations clearly
showed that the NNM frequency was shifted up to 35 Hz (Figure 2.9). Moreover, although
low-order interactions are often the only ones of interest, the continuation algorithm has
to pass through high-order interactions (e.g., the 15:1 and 120:1 in Figure 2.15), which
are increasingly present as the dimensionality of the system increases. As illustrated in
Figure 2.23, one solution to this issue is the harmonic balance method which allows to
truncate the high-frequency content [37].

Another important research direction is to consider the presence of (nonlinear) damping
in the structural model. Indeed, although the present study neglects its presence for the
computation of NNMs, the SmallSat structure possesses an important amount of damping
introduced by the elastomeric plots of the WEMS. The next chapters investigate the
concept of NNMs for nonconservative systems and bring numerical tools for dealing with
nonlinearly-damped structures.
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Figure 2.23: Fifth NNM of the SmallSat computed using the method of Chapter 1 (– –)
and the harmonic balance method (–) whose frequency content is truncated after the fifth
harmonic.





Chapter 3

A Finite Element Approach to
Compute NNMs of Nonconservative
Systems

Abstract

This chapter aims at developing a finite-element-based method for solving the
partial differential equations governing the geometry of an invariant mani-
fold. The hyperbolic character of the equations is rigorously addressed using
a Petrov-Galerkin formulation. Appropriate boundary conditions are also con-
sidered by using an annular resolution strategy which progressively grows the
manifold. The algorithm is applicable to both conservative and nonconservative
systems.

69



Chapter 3. A Finite Element Approach to Compute NNMs of Nonconservative Systems 70

3.1 Introduction

In Chapter 2, the dynamics of a strongly nonlinear spacecraft was discussed. In this
example, and, as frequently reported in the literature, the damped dynamics of the non-
linear system could be interpreted based on the topological structure and bifurcations of
the nonlinear normal modes (NNMs) of the underlying Hamiltonian system. However,
“simple” viscous damping may sometimes drastically alter the dynamics, e.g., by turning
hardening nonlinear behavior into softening behavior [151]. Moreover, complex damping
mechanisms are present in all engineering applications. For illustration, the frequency re-
sponse function of the Morane Saulnier MS-760 Paris aircraft (Figure 3.1(a)) is plotted in
Figure 3.1(b) for low and high excitation amplitudes. The response amplitude decreases
as the force level increases, a clear sign of the presence of nonlinear damping mecha-
nisms. The development of a nonconservative framework for NNMs can help rigorously
understand and predict such effects.

For nonconservative systems, nonlinear normal modes (NNMs) are defined as two-dimen-
sional invariant manifolds which can, in turn, be described using partial differential equa-
tions (PDEs) (cf. Chapter 1). Although there exist two numerical methods that can
accurately solve these PDEs, several challenges remain to be addressed. The method of
Pesheck et al. [124] is computational expensive, and, in spite of its improvement with
simpler shape functions for the amplitude variable, progress for considering larger dimen-
sional systems have still to be made. Moreover, to our knowledge, the method was applied
for computing the NNMs of a nonconservative system only in [96]. Finally, the method
proposed by Blanc et al. [13] is, as of now, not applicable to nonconservative systems.

The objective of this chapter is therefore to develop a method that can efficiently and
accurately compute NNMs of nonconservative systems. Targeting high-dimensional me-
chanical systems, the idea of reducing the shape function complexity is followed and the
recourse to the finite element method (FEM) appears naturally. An important obser-
vation of this chapter that was not recognized in the work of Pesheck et al. [124] is to
identify the hyperbolic nature of the PDEs, which requires the use of appropriate nu-
merical methods. This interpretation is actually similar to the interpretation of Blanc et
al. [13] who interpreted the PDEs as transport equations.

The chapter is organized as follows. Section 3.2 discusses the hyperbolic nature of the
PDEs. In Section 3.3, the finite element method is presented and each step of the resolu-
tion strategy is detailed. However, for clarity, the discussion focuses first on conservative
systems. It is then extended to nonconservative systems in Section 3.4. Section 3.5
stresses the importance of taking into account the hyperbolic character of the PDEs for
accurately solving them. The proposed method is also briefly compared to the finite dif-
ference method (FDM) proposed in [13]. Finally, the key points about the developments
are summarized in Section 3.6.
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Figure 3.1: Morane-Saulnier 760 Paris aircraft. (a) Aircraft in the ONERA’s laboratory;
(b) frequency response function (FRF) for low (–) and high (– –) excitation amplitudes.

3.2 The Manifold-Governing PDEs

The approach of Shaw and Pierre presented in Chapter 1 describes a NNM in terms of
2N − 2 PDEs

Yi(u, v) =
∂Xi(u, v)

∂u
v +

∂Xi(u, v)
∂v

fk,

fi =
∂Yi(u, v)

∂u
v +

∂Yi(u, v)
∂v

fk, (3.1)
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where i = 1, ..., N ; i 6= k, fi = fi(u,X(u, v), v,Y(u, v)) are the components of f (cf.
Equation (1.14)) with X = {Xj : j = 1, ..., N ; j 6= k} and Y = {Yj : j = 1, ..., N ; j 6= k}.

Interestingly, Equations (3.1) can be recast into a form similar to [13]:
{

V · ∇Xi(u, v) − Yi(u, v) = 0, VT = {V1 V2} = {v fk(u, v)}
V · ∇Yi(u, v) − fi(u, v) = 0, i = 1, ..., N ; i 6= k.

(3.2)

where ∇ stands for the gradient operator and (.)T for the transpose operation. These
equations are quasilinear first-order hyperbolic PDEs that bear a resemblance to flow
equations encountered in fluid dynamics. Following this interpretation, the streamlines of
the velocity field V are given by the so-called characteristic curves (u(s), v(s)) which are
governed by [70]:

du

ds
= V1 = v,

dv

ds
= V2 = fk, (3.3)

where s is the curvilinear coordinate which parametrizes a given characteristic curve.
These curves correspond to the system’s dynamics projected onto the (u, v) plane. Fig-
ure 3.2 shows the flow of the 2DOF conservative system considered in Section 1.5.2, which
possesses a cubic spring attached to its first mass. The flow was computed after solving the
manifold-governing PDEs with the proposed method. Characteristics curves (or charac-
teristics) are known to illustrate the propagation of the “information” into the domain. In
the conservative framework, the characteristics coincide with the closed iso-energy curves
of the system, i.e., the isolated periodic solutions of the NNM.

 

 

v

u

∂ Ω+ ∂ Ω−

Figure 3.2: Flow V of the manifold-governing PDEs for the 2DOF nonlinear conservative
system considered in Section 4.2 and for a finite domain Ω. The velocity field (→) is
tangent to iso-energy curves (–). The inflow and outflow boundaries, ∂Ω− and ∂Ω+, are
underlined in blue and orange, respectively.
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Along a characteristic, the derivatives of the unknown fields are:

dXi(u(s), v(s))
ds

=
∂Xi

∂u

du

ds
+
∂Xi

∂v

dv

ds
= V · ∇Xi,

dYi(u(s), v(s))
ds

=
∂Yi

∂u

du

ds
+
∂Yi

∂v

dv

ds
= V · ∇Yi, (3.4)

with i = 1, ..., N ; i 6= k. Comparing with Equations (3.1), one has the following corre-
spondence:

∂Xi

∂s
= Yi,

∂u

∂s
= v,

∂v

∂s
= fk,

∂Yi

∂s
= fi. (3.5)

Characteristics are thus curves along which the PDEs becomes ordinary differential equa-
tions (ODEs) with appropriate initial conditions. Interestingly, the set of ODEs (3.5) is
exactly the original system governing the dynamics of the system where s plays the role of
time. As a result, any attempt to solve the manifold-governing PDEs using the so-called
method of characteristics would result in the original problem of solving the ODE. The
reader can refer to references [88, 135] for further details about hyperbolic PDEs.

3.3 Computation of NNMs Using the Finite Element

Method

This section presents a rigorous and effective methodology for computing NNMs which
exploits the interpretation of the PDEs as fluid flow equations. The conservative case is
considered in this section, whereas the computational method is extended to nonconser-
vative systems in Section 3.4.

Targeting a solution for finite amplitudes, the PDEs are solved in a finite domain Ω ⊂ R
2

whose boundary is denoted ∂Ω. As illustrated in Figure 3.2, this boundary may comprise
inflow and outflow regions

∂Ω− : {u = (u, v) ∈ Ω : V(u).n(u) < 0}
∂Ω+ : {u = (u, v) ∈ Ω : V(u).n(u) > 0} , (3.6)

respectively. n(u) is the outward normal vector to ∂Ω.

Solving hyperbolic PDEs requires boundary conditions (BCs) at inflow where the velocity
vector V points inward the domain. Indeed, even if there are no BCs in Equations (3.2),
the solution along the incoming characteristic depends mathematically on the solution
outside the domain. This is why the unknown field values (Xi, Yi) have to be imposed on
∂Ω−. The mathematical problem to solve becomes



















V · ∇Xi − Yi = 0,
V · ∇Yi − fi = 0, VT = {v fk} , in Ω,
Xi|∂Ω−

= X−

i , i = 1, ..., N ; i 6= k,
Yi|∂Ω−

= Y −

i ,

(3.7)
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A difficulty is that BCs at ∂Ω− cannot be set before the actual solution is known. One
interesting observation in Figure 3.2 is that the flow is tangent to the iso-energy curves, i.e.,
there is no inflow if the computation domain coincides with an iso-energy curve. Indeed,
on the one hand, based on Hamilton’s principle, the power balance for a conservative
system writes

d

dt
E =

d

dt
(K + V) = 0 (3.8)

where E , K, and V are the total, kinetic, and potential energy, respectively. On the other
hand, E = E(u) on the invariant manifold describing the NNM. This leads to

d

dt
E(u) = ∇E .du

dt
= ∇E .V. (3.9)

This last expression equals zero if and only if the flow is locally everywhere tangent to the
iso-energy curve defined by E . In this case, no BCs have to be imposed. In addition, two
iso-energy curves form the inner and outer boundaries of an annular domain in which no
inflow exists. The invariant manifold can therefore be computed considering subsequent
annular domains, which substantially reduces the computational burden.

The computational method proposed herein exploits this strategy and is represented
schematically in Figure 3.3. It starts in a small domain centered around the origin in
which the system is assumed to behave linearly. A first guess of the iso-energy curve
that realizes the domain boundary is obtained based on the corresponding LNM (see
Section 3.3.1). To compute the invariant manifold in this domain, the boundary is first
corrected to better fit the actual iso-energy curve. This is carried out thanks to a mesh-
moving technique discussed in Section 3.3.2. Then, an iteration of a specific FE method
described in Section 3.3.3 is performed. The mesh-moving and FE methods are applied
sequentially until the solution is computed with a given accuracy. A new annular domain
is predicted based on the computed solution, as presented in Section 3.3.4, and the PDEs
are solved in this new computational domain following the same procedure. The algorithm
is stopped after a user-defined number of regions (Nmax), at a user-defined energy (Emax),
or when the manifold parameterization fails (cf. discussion in Chapter 4). Eventually, the
different annular domains are merged to form a single domain by defining a global mesh
that interpolates over all the local meshes.

3.3.1 Initial Domain and First Guess

The algorithm starts by solving the equations in a small domain around the origin. The
initial shape of the domain is computed using an iso-energy curve traced by a low-energy
(E0) periodic solution of the underlying conservative LNM. In the (u, v) plane, this curve
is defined by

u0 = δψm
k cos(ωmt),

v0 = −δωmψ
m
k sin(ωmt), (3.10)
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Figure 3.3: Schematics of the algorithm resolution strategy (a) including the mesh moving
operation (b), the finite element formulation using SUPG (c), and the domain prediction
(d).
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where t = {t0 = 0, ..., tF = t0 + F.∆T = Tm}, ψm is the mth normalized LNM and ψm
k its

kth component, ωm its natural frequency, and Tm the corresponding period. The scaling
factor δ is given by:

δ =

(

2E0

(ψm)T Kψm

)
1
2

, (3.11)

where K is the linear stiffness matrix. For solving the PDEs, the domain is discretized
into a set of finite elements Ωe. In order to have elements whose size is not influenced
by the non-regular spacing between the points defining the domain boundary, boundary
points are first interpolated using splines. The domain is then meshed according to a
user-defined characteristic length and using algorithms implemented in METAFOR [1] or
GMSH [52] if quadrangular or triangular elements are needed, respectively.

For this initial mesh, a first guess of the solution is defined equal to the two-dimensional
invariant plane of the linear system (i.e., the LNM). Accordingly, each pair of unknown
fields i is computed at node j using

Xi(uj, vj) = a1iuj + a2ivj, Yi(uj, vj) = b1iuj + b2ivj, (3.12)

where the linear coefficients are obtained as in Chapter 1. To improve this first approxi-
mation, the full third- or fifth-order polynomial expansion developed in Chapter 1 could
have been employed. However, generally speaking, as the convergence domain of this
polynomial series is a priori unknown, nothing guarantees an actual improvement of the
first guess over the entire domain Ω.

In mechanical systems, there often exist several orders of magnitude between displace-
ments and velocities (see, for instance, the beam example in Chapter 4). This difference re-
sults in a disproportionate computational domain whose accurate meshing requires many
elements. To circumvent this issue, all variables are scaled using two transformations. A
first dimensionless scalar parameter, β, rescales time in order to obtain similar displace-
ment and velocity magnitudes. A new time scale, slow if (β < 1) or fast if (β > 1), is thus
introduced by the change of variable τ = βt where τ is the new time. The parameter β is
estimated at the linear natural frequency ωl. The second transformation further improves
numerical performance by individually rescaling all displacements in order to obtain, at
the linear level, order 1 quantities. The displacements and velocities become x = Sx̃ and
y = Sỹ, where S is a diagonal matrix whose elements are Sii = δψm

i ,∀i = 1, ..., N . For
clarity, scaled variables are not further considered in the mathematical developments of
the chapter. The reader should however remember that PDEs are solved in the scaled
variables and that the change of coordinates from and to the scaled quantities is performed
for every evaluation of the nonlinear terms and of their derivatives.

3.3.2 Domain Correction Using a Mesh-Moving Technique

The next step of the algorithm corrects the assumed domain boundary such that it follows
an iso-energy curve. To this end, the boundary is moved according to the energy difference
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∆En between a reference node and each other boundary node n. The reference node is
defined as the boundary node with the smallest energy. As shown in Figure 3.3(b), this
ensures that the corrected boundary is enclosed into the initial boundary so that delicate
extrapolation between meshes is avoided.

The corrections ∆un = [∆un ∆vn]T to the boundary node n are calculated by linearizing
the energy around this node considering that u and v are independent

∆En = E ref. − En =
dE
du

∣

∣

∣

∣

∣

n

∆un +
dE
dv

∣

∣

∣

∣

∣

n

∆vn

⇒ ∆En =

[

dE
du

∣

∣

∣

∣

∣

n
dE
dv

∣

∣

∣

∣

∣

n]T

∆un (3.13)

The total derivatives of the energy with respect to the master coordinates are derived
using the chain rule for differentiation

dEn

du
=

∂E
∂u

∣

∣

∣

∣

∣

n

+
∂E
∂X

∣

∣

∣

∣

∣

n
∂X

∂u

∣

∣

∣

∣

∣

n

+
∂E
∂Y

∣

∣

∣

∣

∣

n
∂Y

∂u

∣

∣

∣

∣

∣

n

,

dEn

dv
=

∂E
∂v

∣

∣

∣

∣

∣

n

+
∂E
∂X

∣

∣

∣

∣

∣

n
∂X

∂v

∣

∣

∣

∣

∣

n

+
∂E
∂Y

∣

∣

∣

∣

∣

n
∂Y

∂v

∣

∣

∣

∣

∣

n

. (3.14)

The partial derivatives of the unknown fields (X,Y) with respect to (u, v) are obtained
through the finite element interpolation (see Section 3.3.3) whereas the partial derivatives
of the energy with respect to (X,Y) almost reduce to the equations of motion (1.2).
Indeed, the expression of the energy is given by

En = En(u, v,X(u, v),Y(u, v)) =
1
2

(

xT Kx + ẋT Mẋ
)

+ Vnl, (3.15)

where Vnl defines the potential energy of the nonlinear stiffness terms. The partial deriva-
tives with respect to state-space variables reads

∂En

∂xj

= Kjixi +
∂Vnl

∂xj

= Kjixi + fnl,j (3.16)

∂En

∂yj

= Mjixi +
∂Vnl

∂yj

= Kjixi + fnl,j (3.17)

where summation for repeated indices is assumed. Eventually, the variations ∂En

∂u
and ∂En

∂v

are obtained for j = k and ∂En

∂X
and ∂En

∂Y
for j = 1, ..., N ; j 6= k. Solving Equations (3.13)

for (∆u,∆v) requires the use of the Moore-Penrose pseudo-inverse since the system is
under determined.

To preserve a well-shaped mesh during boundary corrections, the annular domain is viewed
as a pseudo-elastic medium for which the nodes follow the solution of an in-plane linear
elasticity problem [150, 167]. This is illustrated in Figure 3.3(b). The main advantage of
mesh-moving techniques is that remeshing operations are not necessary, which decreases
the computational cost.
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The equations governing the nodal displacements ∆u are

∇.σ = 0, σ = D : ǫ, ǫ =
1
2

(∇∆u + ∇∆uT), (3.18)

Dijkl =
Eν

(1 + ν)(1 − 2ν)
δijδkl +

E

1 + ν

(1
2
δikδjl +

1
2
δilδjk

)

. (3.19)

The operator ∇.(.) denotes the divergence operator, σ the Cauchy stress tensor, D the
Hooke tensor, ǫ the strain tensor, E Young’s modulus, ν Poisson’s ratio, and δij the
Kronecker delta. The parameter values are not critical and are set to E = 108 Pa,
ν = −0.25 throughout this study. However, to preserve element aspect ratios, ν must be
negative.

After discretization using the finite element method, a linear algebraic problem, Kelast∆u =
0, is obtained where Kelast denotes the stiffness matrix of the discretized annular domain.
The nodes are partitioned into three sets, namely clamped (inner), interior and outer
nodes







Kcc Kci Kco

Kic Kii Kio

Koc Koi Koo







elast 





∆uc

∆ui

∆uo






= 0 (3.20)

The inner nodes are clamped (i.e., ∆uc = 0), and the outer nodes follow the corrections
computed through Equations (3.13). The displacements of the interior nodes are then
computed through

∆ui = −K−1
ii Kio∆uo (3.21)

Domain corrections are recursively applied until the mean and standard deviation of the
energy difference of all outer-boundary nodes are below a certain tolerance.

3.3.3 Streamline Upwind Petrov-Galerkin (SUPG)

Standard Galerkin FE formulations use identical shape and test functions. They are
known to exhibit poor performance in the case of first-order hyperbolic PDEs, such as
those encountered in fluid dynamics [19, 41, 44]. Specifically, a suboptimal convergence
rate as well as spurious oscillations in the solutions were observed. As a remedy, numerous
stabilization methods, based on alternative test functions, were introduced. Among the
many techniques introduced, the streamline upwind Petrov-Galerkin (SUPG) method
proved to be effective and is considered herein. It falls within the family of Petrov-
Galerkin formulations where test and shape functions are taken in different spaces and
which overweight test functions that are upstream. The approach is rather standard
in computational mechanics, and the interested reader can refer to [19] for a detailed
description of SUPG method.
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Applying a weighted residual approach to Equations (3.2) where the variations δỸi and
δX̃i are applied to preserve consistent units yields

∫

Ω
[V · ∇Xi(u, v) − Yi(u, v)] δỸi dΩ = 0,

∫

Ω
[V · ∇Yi(u, v) − fi(u, v,X,Y)] δX̃i dΩ = 0, (3.22)

with i = 1, ..., N ; i 6= k.

The weak form (3.22) over Ω is evaluated by summing the integrals over each element e
which pave the domain:

∑

e

∫

Ωe

[V · ∇Xe
i (u, v) − Y e

i (u, v)] δỸ e
i dΩe = 0,

∑

e

∫

Ωe

[V · ∇Y e
i (u, v) − fi(u, v,Xe,Ye)] δX̃e

i dΩ
e = 0 (3.23)

where unknown and virtual fields within an element e are expressed as

Xe
i =

ñ
∑

b=1

N b(u, v)Xe,b
i Y e

i =
ñ
∑

b=1

N b(u, v)Y e,b
i (3.24)

δX̃e
i =

ñ
∑

b=1

Ñ b(u, v)δX̃e,b
i δỸ e

i =
ñ
∑

b=1

Ñ b(u, v)δỸ e,b
i (3.25)

where ñ equals to 3 or 4 for linear triangular or linear quadrangular elements, respectively.
The shape functions are first-order Lagrange shape functions, N b ∈ P

1: N b(u, v) = 1
4
(1 +

ubu)(1+vbv) with ub and vb the values of the coordinates at node b. The test functions are
Ñ b = N b + τ eV.∇N b where τ eV.∇N b is the upstream overweighting. As a consequence,
discontinuous test functions are employed, as illustrated in Figure 3.3(c) [60]. In fluid
dynamics, the parameter τ e is defined on the basis of the element-Peclet number, which
is a measure element by element of the ratio between convection and diffusion in the flow.
In the present study, taking the limit for pure convection, τ e = he/(2||Ṽ||2) where he

is the characteristic size of mesh elements and Ṽ is the velocity vector evaluated at the
center of the element (uc, vc).

Each element-integral is evaluated with the so-called Gauss quadrature rule which esti-
mates an integral I as

I =
∫ +1

−1

∫ +1

−1
f(ξ, η)dξdη =

Ng
∑

i=1

Ng
∑

j=1

f(ξi, ηj)wiwj (3.26)

where wi and wj are the Gauss weights associated to the N2
g Gauss points (ξi, ηj) defined

in a system of coordinates of a reference elements. Gauss-point coordinates and weights
are tabulated in many standard text-books about the FEM [171]. In the present work,
Ng was considered equal to two.



Chapter 3. A Finite Element Approach to Compute NNMs of Nonconservative Systems 80

For each element, the linear mapping from the reference element to the actual element in
the physical coordinates (u, v) is given by

(

u
v

)

=

(

gu(ξ, η)
gv(ξ, η)

)

=

(

∑ñ
i N

b(ξ, η)ub
∑ñ

i N
b(ξ, η)vb

)

(3.27)

where the functions N b are identical to the shape functions of the finite element interpo-
lation. Accordingly, the derivatives in Equations (3.23) follow

[

∂Na

∂ξ
∂Na

∂η

]

=

[

∂u
∂ξ

∂v
∂ξ

∂u
∂η

∂v
∂η

] [

∂Na

∂u
∂Na

∂v

]

= J

[

∂Na

∂u
∂Na

∂v

]

, (3.28)

⇒
[

∂Na

∂u
∂Na

∂v

]

= J−1

[

∂Na

∂ξ
∂Na

∂η

]

(3.29)

where the matrix J is the Jacobian matrix of the mapping.

The inverse transformation is useful not only for computing τ e but also for the post-
processing of the dynamics on the NNM. This transformation is defined as

(

u
v

)

=

(

a0 + a1ξ + a2η + a3ξη
b0 + b1ξ + b2η + b3ξη

)

(3.30)

where the coefficients a and b are determined using the four nodes of the element since
their (ξ, η) coordinates are known. The system of equations is then solved for the point
(u, v) of interest.

After FE discretization, the PDEs are transformed into a set of coupled nonlinear algebraic
equations possessing a sparse tri-band-diagonal structure. This is a distinct advantage
over the formulation in [126]. These algebraic equations are solved using a Newton-
Raphson procedure where the Jacobian matrix is provided analytically. Despite the PDEs
possess N distinct solutions (i.e., one for each mode), only one is relevant for the current
shape of the domain and is close to the first guess obtained from the previous domain
(see next section). If BCs are well set and the manifold parametrization is still valid (see
Section 4.2), the Newton-Raphson procedure converges within 2 or 3 iterations. In this
study, the convergence criterion tol is satisfied when the L2 norm of the residue is below
10−7. We note that the PDEs to solve remain nonlinear even if the considered mechanical
system is linear.

Remark: As the size of the discretized problem increases, Matlab direct solver requires
important memory resources. As a consequence, the recourse to iterative solvers (e.g.,
the generalized minimal residual (GMRes)) was sometimes mandatory. To avoid a slow
convergence of these solvers, preconditioners computed form incomplete LU factorization
(ILU) were considered. However, no dedicated investigations for defining a general and
effective preconditioner were conducted.
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3.3.4 Domain Prediction

Once the solution for the current annular domain is computed, a new annular domain
can be predicted, as illustrated in Figure 3.3(d). Its inner boundary is defined as the
previous outer boundary, whereas its outer boundary is determined by applying an energy
increment ∆E to the previous outer boundary. The new increment ∆Ed+1 is determined
so that the SUPG method requires on average a user-specified number N∗ of iterations.
It follows that

∆Ed+1 =
(

N∗

Nd

)

∆Ed (3.31)

where Nd is the actual number of iteration require for the previous domain.

Similarly to the first step of the algorithm, Equation (3.13) can be used to compute the
corresponding nodal displacements ∆un and ∆vn. The solution at each outer-boundary
node of the new domain is computed as follows

Xi(un + ∆un, vn + ∆vn) = Xi(un, vn) +
∂Xi

∂u

∣

∣

∣

∣

∣

n

∆un +
∂Xi

∂v

∣

∣

∣

∣

∣

n

∆vn, (3.32)

Yi(un + ∆un, vn + ∆vn) = Yi(un, vn) +
∂Yi

∂u

∣

∣

∣

∣

∣

n

∆un +
∂Yi

∂v

∣

∣

∣

∣

∣

n

∆vn, (3.33)

with i = 1, ..., N ; i 6= k. The new annular domain is meshed, and the solution for all
internal nodes is approximated using linear interpolation. Eventually, a complete guess
for the solution in the new annular domain is obtained, and the mesh-moving technique
of Section 3.3.2 can be applied.

3.4 Extension to Nonconservative Systems

All the previous developments considered the conservative case. This section aims at show-
ing that the method can be naturally extended to nonconservative systems. Figure 3.4
presents the flow field of the 2DOF nonconservative system considered in Chapter 1. This
system includes cubic hardening nonlinearity and nonproportional linear damping. Gen-
erally speaking, the flow spirals down to the equilibrium point of the system. Unlike the
conservative case, the flow now crosses the iso-energetic boundaries, which means that
BCs are required at the outer, yet unknown, boundary. A graphical depiction is provided
in Figure 3.5(a).

Mathematically, the flow can be “reversed” by changing the sign of the test functions.
Doing so, inflow/outflow boundaries are swapped, as illustrated in Figure 3.5(b). There is
now inflow at the inner boundary. Because the solution in the previous annular domain is
available, BCs can be easily imposed at this boundary for solving the PDEs in the current
annular domain. As a consequence, the recursive strategy developed for conservative
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Figure 3.4: Trajectory (−) and velocity vector V (→) of the manifold-governing PDEs
for a 2DOF nonconservative system.

(a) (b)

Figure 3.5: Schematics of the extension of the algorithm to nonconservative systems. BCs
are required at the inflow boundary ∂Ω− depicted in light blue. (a) Original problem; (b)
Problem with reversed flow.

systems can be applied as such in the nonconservative case, providing a straightforward
extension of our algorithm to damped nonlinear systems.

The choice of an iso-energy curve for defining an inflow boundary appears natural because
damping decreases energy. Although rigorous in many circumstances, Chapter 5 will
show that this choice is not always adequate in the presence of nonlinear damping. This
particular aspect of the method will be revised in Chapter 5.
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3.5 Discussion

3.5.1 Comparison with the Transport Method

As mentioned at several instances, Blanc et al. [13] recently regarded the manifold-
governing PDEs as transport equations. This interpretation is, in essence, similar to the
interpretation made in this thesis. The hyperbolic nature of the equations was rigorously
addressed using an off-centered finite difference scheme and appropriate BCs updated us-
ing an adjoint method (cf. Chapter 1). Thanks to its solid theoretical foundations, the
method provided accurate reduced-order models capturing the frequency-energy depen-
dence of a conservative system.

The FEM proposed in this chapter is now briefly compared to the finite difference method
(FDM). For this comparison, the 2DOF conservative system presented in Chapter 1 is
considered without damping.

The slave coordinate Y2(u, v) of the in-phase NNM is plotted in Figure 3.6. The results
obtained with the FEM and the FDM are presented in Figure 3.6(a) and (b), respec-
tively. A preliminary observation shows that both surfaces have a similar aspect with an
increasing curvature for large amplitudes of the master velocity. In this area, the surfaces
become almost vertical which indicates that both methods computed the manifold close
to the theoretical limit imposed by the parametrization (cf. Chapter 4). The agreement
between the FEM and FDM is confirmed by an almost perfect overlap of the two surfaces
in Figure 3.6(c).

The out-of-phase NNM of the same 2DOF system is now computed and investigated for
high vibration amplitudes. The slave displacement X2 obtained by the FEM is presented
in Figure 3.7(a). In contrast to the in-phase NNM, the overall shape strongly deviates
from a flat surface and presents a peak and a dip on either side of the zero-displacement
line. This illustrates the localization phenomenon during which the energy of the sys-
tem localizes to some DOFs (here, the master one) while the amplitude of the others is
strongly reduced. The surface computed using the FDM is presented in Figure 3.7(b).
Although the overall shape is similar to the FEM, the manifold appears elongated. The
superposition of both surfaces in Figure 3.7(c) shows that, in spite of similar maximum
amplitudes for x1, the domains where the solution was computed are different in both
methods. Moreover, whereas the agreement between both methods is excellent along the
zero-velocity line, a deviation is noticed elsewhere. Figure 3.7(c) shows that the solution
of the FEM is in better agreement with the reference solution (in orange) obtained using
continuation (1).

In order to understand the differences observed between the FEM and FDM results, both
resolution methods and, in particular, their treatment of BCs are discussed. Figure 3.8
presents the amplitude-phase domain considered by the FDM for solving the manifold-
governing PDEs. Inside this domain, the characteristics of the PDEs (or, equivalently, the
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periodic orbits of the NNM) are represented by continuous curves. For low amplitudes,
nonlinearities are negligible and characteristics are straight lines. However, as amplitude
increases, nonlinear effects come into play and the straight lines are distorted. The PDEs
are solved in a domain of fixed maximum amplitude a; say, e.g., a = 2. This choice has
two consequences:

1. The characteristics leave and enter into the domain which introduces regions of
inflow and outflow. The transport method thus identifies and imposes BCs on
the inflow parts of the boundary a = 2. As this boundary is at high amplitude, no
information about the incoming flow is available. To overcome this issue, a technique
based on the smoothness of the invariant manifold is used to extrapolate the solution
computed inside the domain [13]. This treatment of BCs is essentially different from
the FEM which considers a domain whose boundary follows the periodic orbit and
where no inflow is present.

2. A direct exploitation of the NNM for model reduction is not possible for motion
amplitudes close to the boundary a = 2 because, during the time integration of the
equations of motion, the dynamics of the system leaves the computational area. The
recourse to global shape functions (as in Pesheck et al. [126]) or to an interpolation
function computed a posteriori (as in the FDM [13]) is thus mandatory. A classical
finite element approach (with local interpolation) would be ineffective as a part of
the rectangular domain would be unexploitable.

In summary, while the difference in the computational domain arises from the amplitude-
phase domain of the FDM that does not cover the high-velocity region of the periodic
orbits (i.e., at φ = π

2
and φ = 3π

2
), the differences that exist between the two surfaces are

explained by the treatment of BCs.

We believe that, in view of its rigorous theoretical foundations, the deviation of the
FDM from the reference solution can actually be resolved by simply changing the domain
discretization and accuracy tolerances. As a computational method, the accuracy of the
solution is reduced to a computational effort (contrary to analytical methods). This
example was however the opportunity to further explain and illustrate our computational
strategy and to show its major differences with an existing method.

3.5.2 Hyperbolicity

The specific treatment of the hyperbolicity, simultaneously through the imposition of BCs
and the consideration of the SUPG formulation, is necessary. Figure 3.9 compares the
solution obtained with a classical Galerkin formulation (blue) and a reference solution
obtained using continuation (orange). In the absence of the two elements mentioned
above, the FE solution deviates substantially from the reference. The importance of the
SUPG method will be further stressed in the first application of Chapter 4.
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(a) (b)

(c)

Figure 3.6: Slave velocity Y2 of the in-phase NNM of the 2DOF (1.1). (a) The manifold
computed using the FEM; (b) the manifold computed using the FDM [13]; (c) comparison
of both surfaces.
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(a) (b)

(c)

Figure 3.7: Slave displacement X2 of the out-of-phase NNM of the 2DOF (1.1). (a)
The manifold computed using the FEM; (b) the manifold computed using the FDM [13];
(c) comparison of both surfaces with a reference solution obtained from a continuation
algorithm (orange).
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Figure 3.8: Characteristics of the manifold-governing PDEs in the amplitude-phase do-
main used by the FDM. Taken from [13].
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Figure 3.9: Comparison between the reference manifold (orange) and the manifold com-
puted using a classical Galerkin formulation without BCs (blue).

3.6 Conclusions

In this chapter, a new finite-element-based method for calculating NNMs defined as two-
dimensional invariant manifolds is established. The challenges that we had to address were
the high dimensionality of the problem (i.e., 2N − 2 equations), the hyperbolic character
of the governing PDEs and the applicability to both conservative and nonconservative sys-
tems. To resolve the first issue, a resolution strategy which grows the invariant manifold
in small annular strips was used. The method was also carefully implemented in Matlab
exploiting its parallel computing capabilities. The second challenge was addressed by im-
posing BCs on the inflow boundary, as required by hyperbolic PDEs, and by utilizing an



Chapter 3. A Finite Element Approach to Compute NNMs of Nonconservative Systems 88

appropriate finite-element scheme, the SUPG formulation. While there exist other meth-
ods such as Galerkin least-squares (GLS) FEM [14] or the discontinuous Galerkin (DG)
methods which can deal with hyperbolic PDEs, the SUPG formulation was considered as a
simple and effective choice. Finally, by simply reversing the flow, a scheme that can tackle
both undamped and damped systems was obtained. The next chapter demonstrates the
proposed method on different conservative and nonconservative examples.

We note that the PDEs obtained from the approach of modal quantities in Section 1.4.2 are
similar to the PDEs considered in this chapter. We therefore believe that the developments
presented in this thesis could also be useful in the context of this approach.



Chapter 4

Numerical Demonstration of the
Proposed Algorithm

Abstract

In this chapter, the accuracy and effectiveness of the proposed algorithm for
computing NNMs as two-dimensional invariant manifolds is demonstrated us-
ing four examples. First, a two-degree-of-freedom system demonstrates the
general applicability of the method. A cantilever beam with nonlinear bound-
ary conditions is then considered to show the effectiveness of the method for
mechanical systems with increased dimensionality. Another example considers
the presence of nonlinear damping in a system composed of two coupled Van
der Pol oscillators. Finally, the last example investigates a full-scale aircraft,
the Morane-Saulnier 760, and demonstrates the applicability of the algorithm
to high-dimensional systems.

89
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4.1 Introduction

The accuracy and effectiveness of the method is demonstrated using four examples. A
two-degree-of-freedom (2DOF) system with quadratic and cubic nonlinearities is investi-
gated in Section 4.2. A method for estimating the motion frequency as a byproduct of
the algorithm is also presented. The NNMs of a cantilever beam with nonlinear bound-
ary conditions are computed in Section 4.3. Both examples are first considered in their
conservative configuration, and linear damping is then introduced. Section 4.4 shows the
general applicability of the method to systems including nonlinear damping and studies
a system of two coupled Van der Pol oscillators. Finally, the Morane-Saulnier aircraft
whose model includes cubic nonlinearities and linear damping is studied in Section 4.5.

4.2 2DOF System With Geometric Nonlinearities

The 2DOF system presented in Figure 4.1 contains quadratic and cubic nonlinearities
arising from second-order terms in the strain tensor. It is an interesting example, because
it can exhibit both softening and hardening behaviors. This example was previously
studied in references [8, 13, 151]. The motion-governing ordinary differential equations
(ODEs) are

¨̂x1 + 2ω1ζ1
˙̂x1 + ω2

1x̂1 +
ω2

1

2

(

3x̂2
1 + x̂2

2

)

+ ω2
2x̂1x̂2 +

ω2
1 + ω2

2

2
x̂1

(

x̂2
1 + x̂2

2

)

= 0,

¨̂x2 + 2ω2ζ2
˙̂x2 + ω2
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2

2

(
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2 + x̂2

1

)

+ ω2
1x̂1x̂2 +

ω2
1 + ω2

2

2
x̂2

(

x̂2
1 + x̂2

2

)

= 0, (4.1)

where x̂1,2 = x1,2/l0, l0 is the spring’s natural length, ζ1 and ζ2 are the damping ratios.
The system is completely parametrized by the two natural frequencies ω1 =

√

k1/m and

ω2 =
√

k2/m [153]. They are chosen equal to 1 rad/s and
√

3 rad/s, respectively.

b

x1l0

k1

m
x2

l0k2

Figure 4.1: Schematic representation of the 2DOF example.
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4.2.1 Conservative Case

The 2DOF system is first considered in its conservative configuration, i.e., ζ1 = ζ2 = 0.
Figure 4.2 presents the results for the first NNM of the system. The displacement–velocity
pair of the first DOF was considered as master coordinates (u, v) = (u1, v1). The invariant
manifold corresponding to the constraint relation X2(u, v) is presented in phase space in
Figure 4.2(a). Four annular regions were considered for the computation of this manifold,
leading to a computational time of 3 minutes in Matlab on a standard laptop computer.
The annular approach which consists in progressively growing the manifold is computa-
tionally interesting. Indeed, solving the PDEs directly on a global mesh with a number of
element similar to that in Figure 4.2(a) requires 2 iterations of the Newton-Raphson (NR)
algorithm for a total computational time of 5 minutes. Conversely, although the resolu-
tion of each annular domain also requires 2 NR iterations, the computational problems
are much smaller, leading to a lower computational time.

Using numerical continuation, a reference manifold of the considered NNM can be built
by gathering in phase space all computed periodic orbits. The global mesh built from
the different annular domains is compared to the reference manifold in Figure 4.2(b).
The two manifolds overlay almost perfectly. In addition, Figure 4.2(c) shows that a
classical Galerkin formulation is associated with spurious element-wise oscillations around
the SUPG solution. Interestingly, due to these oscillations, the flow lines can clearly
be distinguished. This confirms that the hyperbolic PDEs require specific numerical
treatment.

Further validation can be achieved by investigating the nonlinear modal dynamics, i.e.,
the system’s dynamics on the manifold. Initial conditions (ICs) on the first mode in modal
space (u, v) are considered, and Equations (1.18) are integrated over time using a fourth-
order Runge-Kutta method. The modal time series are then projected back to the physical
space using Equations (1.15). The ICs are also transformed back to physical space, and a
second time integration of the full system’s equations (4.1) is performed considering these
ICs. The resulting time series for x̂2(t) are displayed in Figure 4.3(a) and agree to the
point where the difference between the signals is not visible. The presence of an important
second harmonic component in the time series is the sign of a strongly nonlinear regime of
motion. A more quantitative comparison is achieved using the normalized mean-square
error (NMSE). This indicator is considered as very good below 1% (cf. Chapter 1). For the
present example, the NMSE is 10−7%. This NMSE value is particularly low, and one might
want to trade off this accuracy for gaining computational efficiency. The computation
of the first NNM for a total number of 110 elements (instead of 967 as presented in
Figure 4.2(a)) was performed in only 22 seconds. The accuracy of the time series x̂2(t)
(presented in Figure 4.3(b)) is still acceptable with a NMSE of 10−1%. Contrary to
Figure 4.3(a), small differences with respect to the reference solution are observable.

Due to the frequency-energy dependence of nonlinear oscillations, an appropriate graph-
ical depiction of NNMs is a frequency-energy plot (FEP) in which the NNM frequency is
represented at different energy levels [75, 94]. However, because the invariant manifold
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(a) (b)

(c)

Figure 4.2: First NNM of the 2DOF system. (a) Invariant manifold X2 in phase space
with the different annular domains; (b) invariant manifold X2 in phase space (blue: FE
method, orange: numerical continuation); (c) comparison between SUPG (blue) and a
classical Galerkin approach (orange).
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Figure 4.3: Validation of the results obtained on the first NNM of the 2DOF system.
(a) Solution computed with 967 mesh elements; (b) 110 elements. Comparison between
reduced- and full-system dynamics in black and red, respectively. Initial conditions cor-
responding to the red marker in Figure 4.4.

approach is geometric by nature, the frequency is not a direct by-product of the method.
The approach followed here is to estimate, for each iso-energy curve, the NNM period
as the sum over each boundary edge of the ratio between the edge length and the norm
of the velocity vector V along the edge. Figure 4.4 presents the FEP of the first NNM
as computed by the FE method and by numerical continuation [120]. Blue circles dis-
cretize the frequency-energy curve according to the energy increments performed by the
FE algorithm while growing the manifold. The softening behavior of the first NNM is
perfectly well reproduced by the FE method. Another observation is that the FE method
provides accurate results, even for unstable regimes of motion. Note that the red marker
corresponds to the energy of ICs considered in Figure 4.3

The convergence of the FE method is now demonstrated on this first mode. The manifold
is computed for different meshes of the same global domain Ω. The domain corresponds to
an iso-energy boundary in order to remove the influence of the mesh-moving technique. As
no exact analytical solution exists, a solution Z is compared to the solution Zref obtained
with the finest mesh. Because the different meshes have no common nodes, a direct
L2 measure of the solution error cannot be used. Instead, non-overlapping regions are
ignored, and a simple Euclidean vector norm (||.||2) is employed. The convergence rate in
Figure 4.5 is clearly observed for decreasing element characteristic sizes he and is close to
the theoretically expected value of O(h3/2

e ) [71].

The results for the second NNM are presented in Figure 4.6. As for the first NNM,
the invariant manifold and FEP computed by the FE and continuation methods overlay
very well. Figure 4.7 compares the dynamics of the slave velocity y1 reduced on the
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Figure 4.4: FEP (blue circles: FE method, black solid line: stable branch computed using
numerical continuation, black dashed line: unstable branch computed using numerical
continuation).
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Figure 4.5: Convergence of the SUPG method.
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invariant manifold with the full-system dynamics for the points corresponding to the two
red markers in Figure 4.6(b). In Figure 4.7(a), there is a good correspondence between
both time series; the NMSE is 3 × 10−2%. However, a slight discrepancy is observed
for values of y1 around 0, which is due to a too coarse mesh for small displacements.
Decreasing the characteristic size he from 0.0198 in Figure 4.7(a) to 0.0149 in Figure 4.7(b)
resolves this issue; the NMSE reduces to 4 × 10−4%. Figure 4.7(c) performs the same
comparison for initial conditions in the unstable region. Despite the unstable character
of the dynamics, both time series match over more than 8 periods and then drift apart.
The finer mesh considered in Figure 4.7(d) can delay this drift.

To conclude the study of this conservative 2DOF system, the first NNM is computed for
alternative parameters, (ω2

1, ω
2
2) = (1.7, 6) rad2/s2. Figure 4.8 shows that the system has

first a hardening behavior, which is then transformed into softening behavior as energy
increases. This interesting dynamics is accurately reproduced by our method.
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Figure 4.6: Second NNM of the 2DOF system. (a) Invariant manifold Y1 in phase space
(blue: FE method, orange: numerical continuation); (b) FEP (blue circles: FE method,
black solid line: stable branch computed using numerical continuation, black dashed line:
unstable branch computed using numerical continuation).
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Figure 4.7: Second NNM of the 2DOF system: comparison between reduced- and full-
system dynamics in black and red, respectively. (a, b) Initial conditions in the stable
region with he = 0.0198 and he = 0.0149, respectively; (c, d) Initial conditions in the
unstable region with he = 0.0198 and he = 0.0149, respectively.
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Figure 4.8: FEP of the first NNM of the 2DOF system for (ω2
1, ω

2
2) = (1.7, 6) rad2/s2.

Blue circles: FE method, black line: numerical continuation.
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4.2.2 Nonconservative Case

The 2DOF example where (ω2
1, ω

2
2) = (1.8, 6) rad2/s2 is now considered with linear damp-

ing. The first NNM is computed for a lightly damped and a strongly damped case with
(ζ1, ζ2) = (0.001, 0.005) and (ζ1, ζ2) = (0.001, 0.2), respectively. The results are presented
in Figure 4.9. In the presence of weak damping, the invariant manifold in Figure 4.9(a)
possesses the same characteristic shape as for the conservative system (Figure 4.2). How-
ever, the introduction of strong damping dramatically modifies its structure as illustrated
in Figure 4.9(b). The surface now presents a plateau around the origin and then sud-
denly bends. The dynamics of the slave velocity y2 reduced on the invariant manifold
is compared to the full-system’s dynamics for both damping cases in Figures 4.9(c, d).
The ICs considered for the lightly and strongly damped cases are (u, v) = (0.225, 0) and
(u, v) = (0.24, 0), respectively. Each time series is in excellent agreement with its ref-
erence solution, and the NMSE values equal to 4 × 10−4% and 3 × 10−6%, respectively.
One can note that, due to damping, the presence of harmonics that indicates a strongly
nonlinear regime of motion gradually decreases with time. Another observation is that,
although ICs in amplitude are considered, the slave velocity of the strongly damped sys-
tem starts from a non-zero value indicating clearly a phase lag between the master and
slave coordinates of the system.

Figures 4.10(a, b) present the system’s frequency response to harmonic excitation com-
puted for different forcing amplitudes. The computations are carried out using a numerical
continuation algorithm (as in Chapter 2). For (ζ1, ζ2) = (0.001, 0.005), a clear harden-
ing behavior is observed, whereas softening behavior is present for (ζ1, ζ2) = (0.001, 0.2).
It is interesting that simple viscous damping can lead to such fundamental changes in
the dynamics [151]. As nonlinear resonances occur in the neighborhood of NNMs [158],
this behavior can also be predicted by the damped NNMs. Based on the dynamics in-
tegrated in time on the computed manifolds, the frequency-amplitude dependence was
extracted from the free-decay response and the backbone curves shown in dashed lines in
Figure 4.10(a, b) were obtained. The computed backbones accurately draw the resonance
locus of the system and thus are in perfect agreement with numerical continuation. This
further validates the proposed algorithm in the damped case.
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Figure 4.9: First NNM of the damped 2DOF system. (a, c) (ζ1, ζ2) = (0.001, 0.005); (b,
d) (ζ1, ζ2) = (0.001, 0.2). (c, d) Comparison between reduced- and full-system dynamics
in black and red, respectively.
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Figure 4.10: Frequency response of the damped 2DOF system to harmonic forcing. (a)
(ζ1, ζ2) = (0.001, 0.005); (b) (ζ1, ζ2) = (0.001, 0.2). Solid line: numerical continuation;
dashed line; backbone curves extracted from damped NNMs.
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4.3 Cantilever Beam With Nonlinear Boundary Con-

ditions

The algorithm is now validated using a higher-dimensional system, a cantilever steel beam
with a cubic spring attached at its tip (see Figure 4.11). The nonlinear stiffness coefficient
equals to 109 N/m3. The beam is discretized using 10 linear beam elements resulting in
a system of 20 second-order ODEs.
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Figure 4.11: Nonlinear beam: length = 0.7 [m], width = 0.014 [m], height = 0.014 [m],
knl = 109 N/m3.

4.3.1 Conservative Case

The 38 unknown, coupled PDEs are solved by considering the displacement and velocity
of the first beam element as master coordinates. Figure 4.12(a) represents the invariant
manifold of the second NNM for the constraint relation Y8(u1, v1). Overall, this represents
a very large problem with 334.400 nodal unknowns (38 × 8.800 nodes). However, thanks
to the partition in annular domains, only ten minutes were needed for the computation of
the first eight domains. Due to the folding of the manifold at higher energies, it took 20
minutes for the last two annular domains. For this example, the growing strategy is even
more important than in the 2DOF example. Indeed, the algorithm cannot converge on a
global mesh because the initial guess of the iso-energy boundary and of the solution (i.e.,
the LNM) are too far from the actual solution. Numerical experimentation also demon-
strated that, as the number of degrees of freedom of the mechanical system increases,
the most effective approach to compute the NNM is to use small annular domains com-
bined with a small number of finite elements. However, a sufficient number of element is
required to allow convergence up to the desired accuracy tol.

As confirmed in Figure 4.12(b), the manifold computed by the FE method is in excellent
agreement with that computed using numerical continuation. Figure 4.13(a) compares the
reduced and full-system dynamics for the point depicted by a red marker in Figure 4.13(b);
the NMSE is 10−2%. One notes the presence of a very strong third harmonic component,
which is the sign of a strongly nonlinear regime of motion.

Figure 4.12(c) depicts the invariant manifold computed for larger energies using numerical
continuation. The manifold starts to fold and appears to intersect itself but this can be
explained by the fact that it is embedded in the full phase space. As mentioned in
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(a) (b)

(c)

Figure 4.12: Second bending mode of the nonlinear beam. (a) Invariant manifold Y8 in
phase space with the different annular domains; (b) invariant manifold Y8 in phase space
(blue: FE method, orange: numerical continuation). For clarity, only 1.212 nodes out of
the 8.800 used for the computation are represented. (c) Invariant manifold computed for
larger energies (blue: FE method, orange: numerical continuation).
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Figure 4.13: Second bending mode of the nonlinear beam. (a) Comparison between
reduced- and full-system dynamics in black and red, respectively; (b) FEP (blue circles:
FE method, black line: numerical continuation).

[13, 16, 66, 124], this folding often arises when a nonlinear coupling, i.e., an internal
resonance, between two NNMs exists, but it can also occur in the presence of localization
or multiple fixed points. The FEP of Figure 4.13(b) shows that a tongue of internal
resonance indeed appears for high energies. This highlights one intrinsic limitation of
the two-dimensional explicit parameterization of the dynamics, which cannot deal with
folding of the manifolds. However, as shown in Figure 4.12(c), our method managed
to get very close to this theoretical limit. To circumvent this issue, Shaw and Pierre
introduced multi-modal NNMs where the invariant manifold is described by multiple
pairs of master variables [16, 66, 124]. This generalization is not considered in this thesis,
but an alternative is explored in Chapter 6. Note that all the results presented in this
chapter are computed up to the limits of the parameterization.

In the FE method, we remark that a typical sign of the parameterization failure is the
derivatives of constraint relations which become large, and the Jacobian matrix of the
Newton-Raphson scheme that becomes badly conditioned (due to the presence of large-
value elements).

4.3.2 Nonconservative Case

Proportional damping with C = αM + βK where α = 5 and β = 5 × 10−6 is introduced
in the cantilever beam example. The (linear) damping ratio for the first mode is 1%. The
slave velocity Y19 obtained for this damped system is displayed in Figure 4.14(a). In the
presence of damping, no reference manifold computed using a well-established method
exists, and results validation relies on time integration. Figure 4.14(b) compares the
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reduced and full dynamics. They agree very well with an NMSE value of 7 × 10−3%.
Figure 4.14(c) examines the invariant manifold computed for the undamped (blue) and
lightly damped (orange) cases. First, both surfaces appear identical. It is explained by
the proportional character of the damping which does not modify the LNM underlying
the NNM. Only the dynamics on the invariant manifold is modified whereas its geometry
is unchanged. Second, it appears that the presence of damping has slightly shorten the
region where the manifold parameterization is valid. The manifold was therefore computed
in a smaller domain.
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Figure 4.14: First NNM of the nonconservative nonlinear beam. (a) Invariant manifold
Y19; (b) comparison between reduced- and full-system dynamics in black and red, re-
spectively; (c) comparison between the invariant manifold Y19 for the damped (blue) and
undamped (orange) systems.
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4.4 Two Coupled Van Der Pol Oscillators

A system of two coupled Van der Pol oscillators is now considered for demonstrating the
method in the presence of nonlinear damping. This example was already presented by
Bellizzi et al. in [9]. The equations of motion are

ẍ1 + c11ẋ1 + c12ẋ2 − ǫ1

(

1 − x2
1 − δ1x

2
2

)

ẋ1 + x1 = 0,

ẍ2 + c21ẋ1 + c22ẋ2 − ǫ2

(

1 − x2
2 − δ2x

2
1

)

ẋ2 + 4x2 = 0, (4.2)

where c11 = c22 = 0, c12 = −c21 = 0.8, ǫ1 = ǫ2 = 0.5, δ1 = δ2 = 1. Gathering
together all the linear velocity-dependent terms, it appears that the linear damping matrix
possesses a skew-symmetric contribution which is thus conservative. This gyroscopic-like
term is accounted for in the definition of the energy of the system, and the algorithm is
simultaneously generalized to handle such cases.

Figures 4.15(a, b) show the slave coordinates X2 and Y2 associated with the first NNM,
respectively. This NNM was computed in 4 minutes with 19 annular domains. The
dynamics on the NNM is validated in Figure 4.15(c) using (u, v) = (0.1, 0) as initial
conditions. The agreement with respect to the full-system dynamics is excellent with a
NMSE ≈ 10−5%. Due to the negative linear damping present for low-amplitude oscilla-
tions, the displacement x2(t) increases with time. As the (positive) nonlinear damping
terms come into play, negative and positive damping contributions counterbalance each
other, and x2(t) describes a periodic solution. This periodic solution, also called limit
cycle oscillation (LCO), is traced in Figure 4.15(d) using initial condition on either side.
The observation of LCO using NNMs was reported in, e.g., [42, 163].

The second NNM is investigated in Figures 4.16. Similarly to the first NNM, the manifold
was computed using 19 domains but a larger number of elements per domain was however
needed. This leads to a total computational time of 10 minutes. Figures 4.16(a) and (b)
show the slave displacement X2 and velocity Y2, respectively. While the surface describing
X2 is only slightly deformed, the surface for Y2 presents clear deformations inside the
domain. The study of the dynamics for this second NNM also reveals, as for the first
NNM, the presence of a LCO (not represented). Figures 4.16(c) and (d) compare the
reduced- and full-system dynamics for initial conditions on either side of this LCO. At
the beginning of the time series, an excellent agreement is observed. However, after
about forty seconds and owing to the unstable character of the LCO, the small numerical
errors rapidly grow and the dynamics leaves the region of the manifold. Interestingly,
after that the dynamics escapes from the LCO, a transient regime of motion is observed
during about another forty second. Then, the dynamics reaches a steady-state solution
of constant frequency and amplitude (after about t = 80 s). For illustration, the time
series of Figure 4.16(c) is plotted in the (x1, y1, x2) space in Figure 4.17. The trajectory is
colored according to the time elapsed with dark blue for t = 0 s and red for t = 100 s. The
figure clearly shows that the steady-state response observed after 80 seconds corresponds
to the stable LCO captured by the first NNM.
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Figure 4.15: First NNM of the system of two coupled Van der Pol oscillators. (a, b)
Invariant manifoldX2 and Y2. (c) Comparison between reduced- and full-system dynamics
in black and red, respectively. NMSE ≈ 10−5%. (d) Projection of the dynamics onto the
(x1, y1) plane for initial conditions on either sides of the limit cycle.

Finally, a shooting algorithm (cf. Chapter 1) was used to accurately capture the initial
conditions and periods of the detected LCOs. The periods are 6.9 s and 2.9 s for the
LCOs on the first and second NNM, respectively. The sensitivity analysis included in
the shooting procedure also confirmed the stable (resp. unstable) character of the LCO
on the first (resp. second) NNM. Note that a larger number of elements was needed to
accurately capture the LCOs.

Clearly, this example shows that NNMs can not only reduce the dynamics of the system on
SDOF oscillators, but can also capture particular steady state solutions (LCO), allowing
thus to interpret the transient dynamics of the system.
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Figure 4.16: Second NNM of the system of two coupled Van der Pol oscillators. (a,
b) Invariant manifold X2 and Y2. (c, d) Comparison between reduced- and full-system
dynamics in black and red, respectively. Initial conditions on either sides of the limit
cycle.
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Figure 4.17: Invariant manifold X2 for the first (green) and second (blue) NNM. The
time series of Figure 4.16(c) is represented with a curve whose color evolves from blue at
t = 0 s to red at t = 100 s.
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4.5 A Full-Scale Aircraft

As a final example, the numerical computation of the NNMs of a complex real-world struc-
ture, the Morane-Saulnier Paris aircraft, is addressed. A picture of the structure present
in ONERA’s laboratory (the French aerospace laboratory) was presented in Figure 3.1.

During ground vibration tests, nonlinear behaviors in the bolted connections between the
wing and the external fuel tanks located at wing tips were reported [119]. A photograph
of these connections is given in Figure 4.18. Based on experimental time series obtained
with a swept sine excitation, the restoring force surface (RFS) method was applied to
characterize the nonlinearities. As it is frequently reported in the literature [15, 43,
48, 61, 129], the bolted connections introduce a softening behavior. Accordingly, each
connection was modeled using a vertical cubic spring defined between the nodes on either
side of the connection, and whose coefficients were approximated as knl = −1013N/m3.
We refer to [74, 119] for further details about this model.

Figure 4.18: Bolted connections between the external fuel tanks and the wing tips. (a)
Top view; (b) close-up of front and (c) rear attachments.

The linear finite element model of the full-scale aircraft is illustrated in Figure 4.19(a).
Originally created in the Nastran software, it contains more than 80,000 DOFs. It was
converted and exploited in the LMS-SAMTECH SAMCEF software in [119]. Although the
complete model provides a detailed geometry of the structure, an accurate reproduction of
its dynamical behavior in the 0 – 100 Hz frequency range of interest can be obtained with
a lower-dimensional model. Therefore, similarly to the SmallSat application of Chapter 2
and because the nonlinearities are spatially localized, the Craig-Bampton method [7] is
used for reducing the linear components of the model. The reduced-order model (ROM)
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(a)

(b)

Figure 4.19: Morane-Saulnier 760. (a) Finite element model; (b) antisymmetric wing-
torsion LNM.

considered herein includes one node on either side of the bolted connections and a total of
100 internal LNMs. The resulting ROM comprises 124 DOFs: 3 translations per retained
node and 1 per internal mode. It is generated using the SAMCEF software and next
imported in the MATLAB environment.

The investigation of the conservative model in [74, 119] showed that only the modes
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including a motion of the wing were affected by the nonlinearities. The present study
focuses on the first antisymmetric torsion mode of the wing (at ≈ 34 Hz) which is strongly
affected due to important relative displacements at the connections (see the illustration
of the mode in Figure 4.19(b)). Targeting the computation of NNMs for nonconservative
systems, linear proportional damping is introduced into the model. The linear damping
matrix C is given by the relation C = αM + βK where α and β were determined so
as to have 0.5% of damping on the mode of interest. This value is arbitrary since no
experimental identification of the damping was carried out. However, the value remains
realistic for aerospace applications.

Figure 4.20 presents the first antisymmetric torsion mode of the aircraft. The different
annular regions computed by the algorithm are presented in Figure 4.20(a) for the slave
velocity Y56. Close to the origin, the surface is flat, an indication of a linear regime of
motion. Then, the surface deforms and becomes almost vertical over a single annular
region. This observation is also confirmed by the slave velocity coordinate Y124 presented
in Figure 4.20(b). It turns out that the validity limit of the parameterization occurs for
very low motion amplitudes with the consequence that the FEM algorithm could not
progress further. The integration of the dynamics on the invariant manifold is presented
in Figure 4.21. The presence of strong harmonics at the beginning of the time series
indicates the strongly nonlinear character of the vibrations. These harmonics disappear
as damping decreases the energy present in the system. The comparison of the reduced-
and full-system dynamics over about 18 periods shows very good correlation with a NMSE
of 10−2%.

In conclusion, although the presented results are still very preliminary and would deserve
more attention, they show that the proposed algorithm can address the computation of
NNMs for large-scale structures.
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(a)

(b)

Figure 4.20: Antisymmetric wing-torsion NNM of the Paris Aircraft. (a) Slave velocity
Y56 in phase space with the different annular domains; (b) slave velocity Y124 in phase
space.
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Figure 4.21: Validation of the results obtained for the antisymmetric torsion NNM of the
Paris Aircraft. Comparison between reduced- and full-system dynamics in black and red,
respectively.
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4.6 Conclusions

In the present chapter, the algorithm developed in Chapter 3 was demonstrated using
several examples. The annular resolution strategy proved to be effective and simulta-
neously applicable to conservative and nonconservative systems. For all examples, the
method gave accurate results which, in addition, were not restricted to small-amplitude
vibrations. Moreover, the method has several interesting features. First, thanks to the
definition of the computational domain in terms of iso-energy curves, the computed so-
lution is entirely available for time integration. Second, thanks to the recourse to shape
functions, the dynamics on the invariant manifold results directly from the interpolation
with finite element bases and thus perfectly reflects the geometric approximation of the
invariant surface. In the conservative case, the frequency was estimated as a byproduct
of the FE method using the boundary of the different annular domains.

Alike any other algorithm based on the PDEs of Shaw and Pierre, the method is inherently
limited to the regions of phase space where the two-dimensional explicit parameteriza-
tion of the manifold remains valid. The method cannot, for instance, handle internal
resonances between the modes.

Besides the validation of our computational method, this chapter also showed that the
concept of NNMs can play an important role for interpreting the dynamics of damped
nonlinear systems. The 2DOF including quadratic and cubic stiffness demonstrated that
damping can dramatically change the system’s behavior, which cannot be inferred from
conservative NNMs. The system with coupled Van der Pol oscillators also showed that
NNMs can be used for capturing important dynamical phenomena such as LCOs and for
understanding the transient dynamics.



Chapter 5

Application to More Complex
Damping Models

Abstract

This chapter investigates the computation of nonlinear normal modes for sys-
tems possessing more complex damping models, and, hence, more general flows.
In this context, the need for a numerically-robust boundary of the annular do-
mains of our finite-element-based method is discussed, and the recourse to
Lyapunov functions is made. The new methodology is illustrated using a two-
degree-of-freedom system with regularized friction.

113
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5.1 Introduction

The finite-element-based method (FEM) developed in Chapter 3 was demonstrated on
several examples possessing linear or nonlinear damping. However, damping arises from
many physical mechanisms, and its description often requires more complex mathematical
models than the polynomials considered in Chapter 4. One of the most important dissipa-
tion mechanisms in mechanical engineering is friction. Friction is present in virtually all
mechanical systems encountered in practice as, e.g., bladed disks, bearings, brakes, joints,
and, more generally, at the interfaces between structural components. Friction can play
a significant role in the dynamical behavior of a structure and introduce, for instance,
softening nonlinearity [90], bifurcations [47, 63, 142], and even chaos [46, 47]. Under some
circumstances, friction can also generate dynamical instabilities [12].

Since Coulomb’s original work in 1785 [30], the modeling of the friction mechanism led
to numerous physical and phenomenological models which vary according to the micro-
and macro-scale physics that is accounted for. Existing models can be classified in two
categories, namely static and dynamic models. Static models define a direct relation be-
tween the friction force and the relative velocity. An example is the classical Coulomb
friction model. Conversely, dynamic models relate the friction force and the relative ve-
locity through an additional variable playing the role of memory. This internal variable is
described by a differential equation. One of the first dynamic models is Dahl’s model [31].
Since then, several other models were introduced as the LuGre [34], Dankowicz [32], and
Bouc-Wen models [62]. A detailed discussion of these models is beyond the scope of the
present thesis, and we refer to [3, 165] for further details.

In this chapter, we limit our investigations to the computation of nonlinear normal modes
(NNMs) for a system including regularized Coulomb (RC) friction. Although the algo-
rithm developed in Chapter 3 can account for damping, a slow convergence is observed.
This issue is addressed in Section 5.2 where the methodology is generalized using domain
boundaries defined as Lyapunov functions. The effectiveness of the novel algorithm is
demonstrated in Section 5.3 using a two-degree-of-freedom (2DOF). The system is inves-
tigated for several parameter sets.

5.2 Lyapunov-Based Domains

5.2.1 A Case Study

The methodology proposed in Chapter 3 is now applied to a 2DOF system including RC
friction. The governing equations of motion are

ẍ1 + (2x1 − x2) + Fmax tanh (Rẋ1) = 0,

ẍ2 + (2x2 − x1) = 0. (5.1)
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As illustrated in Figure 5.1, Fmax defines the maximum friction force (at high velocity),
and R determines the degree of regularization (i.e., the slope) introduced by the hyperbolic
tangent function. The parameters considered are Fmax = 1.3 N and R = 1 rad.s/m.
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Figure 5.1: Restoring force for the RC friction: fRC(ẋ) = Fmax tanh (Rẋ) with Fmax = 1.3
N and R = 1 rad.s/m.

The algorithm developed in Chapter 3 grows the invariant surface defining a NNM using
successive annular regions whose boundaries are defined as iso-energy curves of the un-
derlying conservative system. The basic idea is that the iso-energy curves should describe
inflow boundaries so that the flow can be reversed and boundary conditions (BCs) im-
posed at inner boundaries. In the case of linear damping, we can demonstrate that this
requirement is satisfied. Indeed, the time derivative of the total energy E is given by

Ė =
d

dt
(K + V) = −D. (5.2)

where K and V are the kinetic and potential energies, respectively, and D is Rayleigh’s
dissipation function [51]. This function is a nonnegative quantity as it takes the form

D =
1
2

ẋT Cẋ (5.3)

where C is the definite-positive linear damping matrix. Equation (5.2) guarantees that

Ė = ∇E .du
dt

< 0 (5.4)

and thus the inflow character of the iso-energy boundaries. For (non-regularized) Coulomb
friction, a similar demonstration is possible and was carried out, e.g., in [159]. Clearly,
the choice of the energy to define domain boundaries is adequate. However, as it will be
shown later, this definition is not necessarily optimal for the inflow.

Indeed, starting from the conservative case where the flow is tangent to the iso-energy
boundary, the introduction of small damping still leads to regions where the flow is almost



Chapter 5. Application to More Complex Damping Models 116

tangent to the boundary. Small numerical “perturbations” as, for instance, boundary
points that do not lie exactly on the same iso-energy curve, can thus turn a part of the
boundary either into inflow or outflow. This is illustrated in Figure 5.2. The domain
centered at the origin is the initial domain computed with an iso-energy curve. The flow
of the equations for the first NNM of system (5.1) is represented by arrows with normalized
amplitudes. Outflow regions are noticed around (u, v) = (−0.3, 0) and (u, v) = (0.3, 0).
As a result, the inner boundary of the next domain will contain both inflow and outflow
regions. In the conservative case, this is not a problem because no BC is imposed when
growing the manifold. Conversely, in the nonconservative case, the setting of BCs on the
entire inner boundary can introduce numerical difficulties.
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Figure 5.2: Flow of the equations of the 2DOF system (5.1) in a domain defined with an
iso-energy boundary. For clarity, arrows are normalized.

For this example, the BC problem led to a slow convergence of the algorithm presented
in Chapter 3. The computation of the first NNM required 18 annular domains for a
total computational time of 60 minutes. On average, each annular domain required eight
iterations of the Newton-Raphson algorithm whereas previous examples required only two
or three iterations. Finally, in spite of the important computational resources that were
used, the reduced dynamics presented a normalized mean-square error (NMSE) of only
0.5% with respect to the full-system dynamics.

To address this issue, the central idea is to find boundaries presenting more inflow so
that the BCs remain always well-established. This chapter develops this idea through the
definition of numerically robust domain boundaries. As we shall see, Lyapunov functions
are particularly suited for this purpose.
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5.2.2 Definition of New Domain Boundaries

To maximize inflow, a new boundary V (u) should be defined such that V̇ = ∇V.du/dt is
as negative as possible. This problem bears strong resemblance with the definition of a
Lyapunov function. A Lyapunov function V = V (u) is a scalar definite positive function:

V (0) = 0, (5.5)

V (u) > 0 ∀u 6= 0 ∈ X0. (5.6)

The compact and connected region X0 ⊂ R
2 includes the equilibrium point of the system

(here, the origin). The existence of a Lyapunov function for which

V̇ =
dV

dt
=
dV

du

du

dt
= ∇V.du

dt
< 0 (5.7)

in the region X0, guarantees the local asymptotic stability of the equilibrium.

The computational approach described below constructs such Lyapunov function auto-
matically, allowing to define a domain boundary that is suitable for the problem at hand.
In particular, the search for a this Lyapunov function targets large values of γ, a quantity
treated as decay rate, in order to have V̇ strongly negative: V̇ ≤ −γV (u). Figure 5.3
illustrates the domain obtained with the approach described herein. Clearly, the outflow
regions noticed in Figure 5.2 have disappeared. One should also note that the function
V is confined to the two-dimensional space of the master coordinates u, regardless of the
dimensionality of the mechanical system.

5.2.3 Computing Lyapunov Functions

In view of their interesting properties, there exist numerous techniques for computing
a Lyapunov function (if there exists one) [53, 68, 69, 118]. In this thesis, the method
proposed by Johansen in [68] is considered. The method is a priori applicable to generic,
yet smooth, nonlinear systems. The problem of finding a Lyapunov function is regarded as
an optimization problem including linear inequalities and can be solved effectively using
quadratic programming.

Parameterization of Lyapunov Function Candidates

The method considers a Lyapunov function candidate under the form:

V (u) = uT P(u)u, (5.8)

where P(u) is a matrix-valued function defined by the linear parameterization

P(u) =
NL
∑

i=1

Piρi(u) (5.9)
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Figure 5.3: Flow of the equations of the 2DOF system (5.1) in a domain defined with a
Lyapunov function. For clarity, arrows are normalized.

where the matrices Pi contain the unknown parameters defining the Lyapunov function,
NL is the number of smooth basis functions ρi that form a partition of unity, i.e.,

NL
∑

i

ρi(u) = 1 ∀u ∈ X0. (5.10)

For our investigations, the normalized Gaussian basis functions are considered [68]. They
are defined as

ρi(u) =
µi(u)

∑NL

j=1 µj(u)
, µi(u) = e−

1
2

∑2

k=1 (uk−ūi,k)
2
/s2

i,k , (5.11)

where the parameters ūi,k and si,k define the position and the spread (or smoothness) of
the basis function ρi, respectively.

Linear Inequalities

By construction, the function V satisfies V (0) = 0, but to be positive definite, the function
has to verify V (u) > 0. This condition is expressed using the (stricter) inequality

V (u) ≥ c1 ‖u‖2
2 ∀u ∈ X0 (5.12)
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for some small c1 > 0. Moreover, for V to be a Lyapunov function, its time derivative has
to be negative. This condition on the function candidate writes

L(u) ≤ −γV (u) (5.13)

for some γ > 0, where

L(u) = V̇ =
dV

du
(u)

du

dt
. (5.14)

The derivative of the master coordinates is du
dt

= (u̇, v̇) = (v, fk) (cf. Section 1.4.2).
Johansen proved that Equation (5.13) in conjunction with Equation (5.12) ensures that
V is a Lyapunov function [68].

The derivative of V with respect to u is determined using Equation (5.8), which gives:

dV

du
(u) =

NL
∑

i=1

(

uT Piu
dρi(u)
du

+
(

PT
i u + Piu

)

ρi(u)

)

. (5.15)

Although the inequalities are nonlinear in the coordinates u, one notes that they are linear
in the parameters P j,k

i . Grouping the elements of the matrices Pi in the vector p as

pT =
[

P 1,1
1 , P 1,2

1 , P 2,1
1 , P 2,2

1 , ..., P 2,2
NL

]

, (5.16)

the inequalities (5.12) and (5.13) write

pT v(u) ≥ c1 ‖u‖2
2 ,

pT l(u) ≤ −γpT v(u). (5.17)

where p contains m = 4NL elements and the functions v : X0 → R
m and l : X0 → R

m

are determined from Equations (5.8) and (5.14), respectively.

Equations (5.17) must hold for every u in X0 and represent thus an infinite set of linear
inequalities. When discretizing the domain, this infinite set is reduced to a finite number
of inequalities that write

Ṽp ≥ c̃,
(

L̃ + γṼ
)

p ≤ 0, (5.18)

where the rows of matrix Ṽ correspond to vT (u) evaluated at each point discretizing X0.
Similarly, the elements of c̃ correspond to c1 ‖u‖2

2, and the rows of L̃ correspond to lT (u).

5.2.4 The Modified Algorithm for NNM Computation

The strategy for solving the manifold-governing PDEs using annular domains defined
with Lyapunov functions is schematically presented in Figure 5.4. The original algorithm
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Figure 5.4: Schematics of the algorithm’s resolution strategy including the computation
of Lyapunov functions after the initial domain and before each domain prediction.

presented in Figure 3.3 requires only minor modifications. In particular, a Lyapunov-
based domain boundary definition step (denoted Comp. Lyap.) is introduced after the
computation of the initial domain from the linear normal mode (LNM) and after the
convergence of the FE algorithm on an annular domain.

The first Lyapunov function is thus determined for the initial domain computed using the
equations of motion linearized at the origin. The computational domain Ω plays the role
of X0 and its discretization into finite elements is considered for defining the finite set of
inequalities. For the next domains, the set X0 is considered as the collection of previous
domains Ω in order to always include the origin in the problem.

In the case where inequalities (5.18) are impossible to satisfy, the parameter γ is de-
creased and the optimization problem is restarted. Conversely, if successful, an iterative
procedure tries to maximize the decay rate by increasing γ (cf. Equation 5.13). Contrary
to Chapter 3 where the shape of iso-energy curves is similar from one annular domain
to the next, the Lyapunov functions may strongly vary. To guarantee the robustness of
the subsequent mesh-moving and domain-prediction steps, the search for the Lyapunov
function is combined with an objective function that aims at minimizing its complexity.
To this end, the objective is formulated as [68]:

φ(p) =
NL
∑

i

NL
∑

l

2
∑

j

2
∑

k

(

P j,k
i − P j,k

l

)2
wi,l. (5.19)

The wi,l’s represent weights that are considered, in the present case, equal to one for
all (i, l). φ(p) can be written in quadratic form φ(p) = pT Qp where Q is a definite
positive matrix determined from Equation (5.19). The quadprog function of MATLAB is
considered for minimizing φ(p) under the constraints (5.18).

Once a Lyapunov function is available, the equations derived for the mesh-moving step
in Section 3.3.2 and for the domain-prediction step in Section 3.3.4 remain applicable,
replacing E by V . In particular, to follow an iso-value of a Lyapunov function, each
boundary node is moved to equal a reference value V ref. of the function. The corrections
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∆un = [∆un ∆vn]T to the node n are calculated by solving

∆V n = V ref. − V n =

[

dV

du

∣

∣

∣

∣

∣

n]T

∆un. (5.20)

where V n = V (un), V ref. = inf
n

{V (un)} and where dV
du

is given by Equation (5.15).
The result of the mesh-moving procedure is illustrated with the evolution of the outer
boundary presented in Figure 5.5. The initial domain is represented with a dashed line.
Based on the flow in this domain, a Lyapunov function is computed and its level sets are
represented by the color lines. After mesh moving, the new domain matches one of the
level sets of the Lyapunov function (solid black line).

As the Lyapunov function changes from domain to domain, the domain-prediction step
cannot rely on a prescribed increment in the Lyapunov function value. Contrary to
Chapter 3, relative increments with respect to the maximum value of the current Lyapunov
function are considered.

u [m]

v 
[m

/s
]

−0.4 0 0.4

−0.4

0

0.4

Figure 5.5: Novel approach for defining the domain boundary. (– –) Boundary defined
using the equations of motion linearized at the origin; (–) final boundary that matches a
iso-value of the Lyapunov function; (color lines) level sets of the Lyapunov function.
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5.3 Revisiting the 2DOF System with Regularized

Friction

The Lyapunov-based methodology is now applied to the 2DOF system (5.1) including RC
friction. In a first step, the parameters Fmax = 1.3 N and R = 1 rad.s/m considered in
Section 5.2.1 are used.

The computation of the in-phase NNM now requires seven annular regions for a total
computational time of 6 minutes. This represents a significant improvement with respect
to the previous computation time of 60 minutes. Each annular region is defined with a
different Lyapunov function. Four basis functions ρi were considered (NL = 4), each of
them centered at a constant distance r from the origin and equally distributed in θ ∈ [0−
2π]. The parameter c1 was considered equal to 10−3. The total cost of the procedure, i.e.,
the computation of the terms involved in the inequalities and the optimization problem,
is typically 0.4 s for 10,000 points. The different boundaries obtained for this NNM are
presented in Figure 5.6. The boundaries are different from each other, but they possess
however a simple shape (as it was required during the optimization procedure). Overall,
the boundaries form ellipses whose main axes are not horizontal.

−5 0 5
−5

0

5

u [m]

v 
[m

/s
]

Figure 5.6: Domain boundaries which follow the different Lyapunov functions computed.
System parameters are Fmax = 1.3 N and R = 1 rad.s/m.

The slave velocity Y1 is illustrated in Figure 5.7(a). The manifold presents a wavy shape
that strongly deviates from a flat surface. These effects are attributable to RC friction
which is the only nonlinearity introduced into the system. The validation of the results
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is presented in Figures 5.7(b) and (c) where the time series of slave coordinates x1 and
y1 are depicted. Due to the strong character of the damping, only three oscillations are
observed. The comparison between the reduced and full dynamics reveals an excellent
agreement with a normalized mean-square error (NMSE) of 9×10−4%. This is a significant
improvement with respect to the 0.5% obtained with the iso-energy domain.
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Figure 5.7: First NNM of the 2DOF system with RC. (a) Invariant surface computed
for Y1 with seven annular domains; (b, c) comparison between reduced- and full-system
dynamics in black and red for x1 and y1, respectively.
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The out-of-phase NNM of system (5.1) is presented in Figure 5.8. The 8 domains were
computed by the algorithm in 9 minutes and are presented in Figure 5.8(a) for the slave
displacement X1. Overall, the manifold is less deformed than for the first NNM. The wavy
shape is however clearly distinguished in Figure 5.8(b) where all the annular domains were
grouped to form a single global mesh. The time series for the slave displacement x1 and
slave velocity y1 are given in Figures 5.8(c) and (d), respectively. As more than ten
oscillations are visible, the typical linear decay rate introduced by friction damping is
noticeable. The validation of the dynamics reduced on the manifold indicates a NMSE
value of 7 × 10−4% with respect to the full-system dynamics.
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Figure 5.8: Second NNM of the 2DOF system with RC. (a) Invariant surface computed
for Y2 with the annular domains; (b, c) comparison between reduced- and full-system
dynamics in black and red for x1 and y1, respectively.

Whereas the out-of-phase NNM can be computed for higher amplitudes, the computation
of the first NNM was interrupted because the algorithm could not progress further. To
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extract the frequency amplitude dependence over a very large range of amplitudes, the
2DOF system is now considered with a lower maximum friction force, Fmax = 1.0 N.
Figure 5.9 presents the frequency response of the 2DOF system for harmonic forcing
of different amplitudes. At low vibration amplitudes, the nonlinear effects play a great
role, and the resonance frequency strongly varies with motion amplitude. The first mode
presents a softening behavior (as frequently reported in the literature [80, 89, 91]) whereas
the second mode presents a hardening behavior. At higher vibration amplitudes, the
resonance peaks narrow, and the resonance frequencies do no longer evolve. The region
of maximum friction force is reached, and the nonlinearity introduced by the RC friction
element does not play an important role, as it was the case for low amplitudes. Similarly
to Chapter 4, the behavior along the backbone is a direct by-product of our method. After
computing the invariant surfaces for both NNMs, the amplitude-frequency dependence of
the oscillations is extracted from the time series integrated on the manifolds. The result
is presented in Figure 5.9 using dashed-dotted lines. The NNMs accurately capture the
system’s backbones.
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Figure 5.9: Response of the 2DOF system with RC friction to harmonic excitations with
different amplitudes (–). Backbone curve traced by the NNMs (dashed - dotted line).
System parameters are Fmax = 1 N and R = 1 rad.s/m.

As final example, the system is considered for a larger value of the maximum friction
force, i.e., Fmax = 1.5 N. The in-phase NNM of the system was computed using 9 annular
regions for a total computational time of 15 minutes. The annular domains obtained for
the slave velocity Y1 are presented in Figure 5.10(a). Overall, the surface looks different
from the reference case Fmax = 1.3 N, and, in particular, the wavy shape is no longer
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present. This observation will find an explanation in Chapter 6. Finally, the dynamics
on the invariant surface is computed and compared to the full-system dynamics. The
two time series of the velocity y1(t) are presented in Figure 5.10(b). Their NMSE is
5 × 10−5%. For the last annular domain, the surface becomes almost vertical in the zero-
displacement high-velocity regions, which indicates a failure of the parameterization. Due
to this folding, it is not possible to choose high-amplitude initial conditions and to observe
more oscillations. This observation will also be confirmed in Chapter 6.
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Figure 5.10: In-phase NNM of the 2DOF system with RC. Parameters Fmax = 1.5 N and
R = 1 rad.s/m. (a) Invariant surface computed for Y1 with the annular domains; (b)
comparison between reduced- and full-system dynamics in black and red, respectively.

5.4 Conclusions

This chapter has revealed the important role played by domain boundaries. If iso-energy
curves represent a theoretically-sound solution for these boundaries, they may not always
be numerically robust. To guarantee and maximize inflow at the domain boundary, a
methodology that exploits general Lyapunov functions was proposed herein and success-
fully validated using a 2DOF system with RC friction. The performance and accuracy
of the NNM computation algorithm were both found to be significantly improved with
respect to the original algorithm developed in Chapter 3. However, more complex case
studies considering dynamic friction models, such as, e.g., Bouc-Wen models, are still to
be investigated to fully assess the potential of the modified algorithm. The influence of
regularization should also be studied.



Chapter 6

Computation of Damped NNMs
Using Boundary Value Problems

Abstract

An important assumption in the description of nonlinear normal modes
(NNMs) proposed by Shaw and Pierre is that there must exist an explicit
parameterization of the invariant manifold, which is not the case when folding
of the manifold occurs. This chapter investigates an alternative method for the
computation of damped NNMs that does not rely on a predefined parameteri-
zation. The two-dimensional manifold is computed as a one-parameter family
of trajectories calculated using a boundary value problem. It is illustrated
with two different two-degree-of-freedom systems possessing a cubic spring and
Coulomb friction, respectively. In view of the complex and interesting dynamics
observed, the work presented in this chapter should be viewed as exploratory
research; it, however, clearly demonstrates the interest of these methods for
the computation of NNMs.

127
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6.1 Introduction

The finite-element-based method (FEM) presented in Chapter 3 and generalized in Chap-
ter 5 resolves a number of issues in the computation of nonlinear normal modes (NNMs)
defined as two-dimensional invariant manifolds. The method is based on partial differ-
ential equations (PDEs) which were obtained by assuming that it is possible to globally
describe the invariant manifold. An explicit parameterization was thus considered. As a
result, the method is applicable only to regions of the phase space where this parameter-
ization remains valid. In practice, this validity range may be limited for several reasons
including internal resonances and localization. For instance, in the presence of an in-
ternal resonance, the manifold appears to fold, as illustrated in the nonlinear beam and
Morane-Saulnier aircraft examples (Figures 4.12 and 4.20).

This is why the concept of multi-modal NNMs was introduced by Boivin et al. in [16].
Multi-modal NNMs were presented as a means to create multi-mode reduced-order models
(ROMs) for which the coupling that exists between the individual NNMs of interest
is considered while the influence of other modes is discarded. As mentioned in [16],
the approach is naturally suitable for addressing the presence of internal resonances.
The mathematical description of these NNMs is obtained by following the single-mode
approach. The state space variables are partitioned into master and slave coordinates, the
latter being functionally related to the former. The difference with the earlier approach
is that M pairs of variables are taken as master pairs leading to 2N − 2M slave variables
described as

xi = Xi (um,vm) , yi = Yi (um,vm) , (6.1)

where um and vm represent the vectors of the nonlinear modal coordinates [16]. Similarly
to the derivation presented in Chapter 1, the PDEs governing the geometry of the invariant
manifold are obtained by removing the explicit time dependence of the equations. After
solving the equations in R

2M , the constraint functionals (6.1) allow to reduce the dynamics
to M coupled nonlinear oscillators. The effectiveness of obtained ROMs was presented
in [124] using a nonlinear beam example. A method for computing multi-mode NNMs
was presented by Jiang et al. in [66] and is an elegant extension of the method proposed
by Pesheck et al. [126] to higher-dimensional PDEs. While effective for reduced-order
modeling, this method still assumes an explicit and global description of the NNM which
does not completely solve the intrinsic parameterization problem.

In this chapter, we propose to address this issue by exploiting a method that was pre-
sented in the general context of two-dimensional (un)stable invariant manifold calculation.
Indeed, there exist several methods which consist in locally growing the invariant surface
without assuming any global parameterization. A comprehensive review of all methods
existing in the literature is beyond the scope of the present thesis, but we can for instance
mention the method of Krauskopf and Osinga [81, 82] which grows the manifold as a
sequence of discretized geodesic level sets. The method proposed by Henderson [57, 58]
paves the manifold surface using a collection of spherical balls centered on well-distributed
points, forming so-called fat trajectories. Another interesting approach is the method of
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Dellnitz and Hohmann [35, 36] where the manifold is covered with boxes. Similar in
many regards with the other methods, it however approximates the invariant manifold
using elements with the same dimension as the phase space. We refer to the survey paper
of Krauskopf et al. [84] for additional details.

Herein, we investigate the method proposed by Doedel et al. [84], which locally covers
the invariant surface using successive trajectories. No parameterization is assumed which
allows to compute the NNM a priori without any limit and, therefore, possibly in the pres-
ence of nonlinear modal interactions. The method is presented in Section 6.2, and, to fit
within its framework, only damped systems are considered. The method is also interest-
ing because it considers continuation techniques for computing the invariant surface and
gives, as a byproduct, access to the dynamics on the manifold. This represents valuable
information, e.g., for analyzing the frequency-amplitude dependence of the oscillations.
A two-degree-of-freedom (2DOF) system with a cubic-spring nonlinearity (cf. Chapter 1)
and a 2DOF with regularized Coulomb (RC) friction (cf. Chapter 5) are considered to
examine the performance of the method.

6.2 A Boundary Value Approach

In contrast with the geometrical approach presented in Chapter 3, the method proposed
by Doedel et al. [39, 40, 84] computes a two-dimensional invariant manifold as a one-
parameter family of trajectories which are defined as boundary value problems (BVPs).
In this section, the method is exploited for the computation of NNMs. For simplicity,
the discussion is limited to stable systems, i.e., systems whose dynamics is attracted to
the equilibrium point around which the invariant manifold is computed. The method is
however applicable to unstable systems.

Using the general first-order form of the equation of motion, ż = g(z), a trajectory on the
invariant manifold (i.e., the NNM) is defined as

z′(t) = Tg(z(t)), (6.2)

z(0) = z0 + r0(cos(θ)ψ1 + sin(θ)ψ2), (6.3)

where (.)′ denotes the first derivative with respect to the normalized time t ∈ [0, 1], r0 is
a small parameter, and T is the final time. Equations (6.2)-(6.3) parameterize using θ a
family of trajectories that start on a small ellipse around the equilibrium point z0. If the
vectors ψ1 and ψ2 are chosen so as to define the eigenspace of the linearized system (at z0),
the trajectories will describe the corresponding NNM. An alternative to the eigenvectors
of Equation (6.3) is to use the linear coefficients (aji, bji) introduced by Shaw and Pierre
(see Chapter 1, Section 1.5).

A first trajectory on the manifold is grown using continuation with T as free parameter
and θ arbitrarily fixed at θ = θ0 [83]. In this problem, Equations (6.2) and (6.3) are solved
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z0

θ0

z0

θ0

Figure 6.1: Schematics of the first continuation step used in the BVP approach. A first
trajectory is grown for θ = θ0.

for Z which groups all the points that discretize the trajectory. This step is illustrated
in Figure 6.1 where, although they can be equally distributed in time, the points along
the trajectory are not necessarily equally distributed in space. During the continuation
process, a function measuring the arclength of the trajectory as

L =
∫ 1

0
T ‖g(z)‖ ds. (6.4)

is monitored by the algorithm, and the continuation is stopped when the trajectory reaches
a user-defined length L̄. Equation (6.3) together with the condition L = L̄ define a BVP
that constrains the initial and final conditions of the trajectory. A second continuation
step, with θ as parameter, is then performed. As illustrated in Figure 6.2, all the points
that discretize the trajectory are continuously varied to cover the complete invariant
manifold. For this last step, T is free to vary. Other stopping criteria than the arclength
of the trajectory can be employed. We refer to [83] for additional details about the original
method.

z0

θ

Figure 6.2: Schematics of the second step used in the BVP approach. Trajectories are
continued with respect to θ to cover the entire invariant surface.

The different continuation steps are performed with the software AUTO [40] which solves
BVPs using the method of orthogonal collocation with piecewise polynomials [38].
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For a stable system, T < 0, and the computation of the first trajectory is similar to
backward time integration. The recourse to the BVP approach has however the advantage
of being compatible with the subsequent continuation steps. The latter are important
because trajectories can be very sensitive with respect to the parameter θ. A continuation
approach which controls the step size in θ with respect to the variation of all the trajectory
(i.e., Z) guarantees a nice covering of the invariant surface. Moreover, stable manifolds
become unstable in backward time, and the recourse to BVP approach is thus arguably
more robust than direct time integration.

6.2.1 The 2DOF System With Cubic Spring

The BVP method is now applied to a 2DOF system possessing a cubic spring and linear
nonproportional damping. The equation of motion are

ẍ1 + 0.3(ẋ1 − ẋ2) + (2x1 − x2) + 0.5x3
1 = 0,

ẍ2 + 0.3ẋ2 + 0.3(ẋ2 − ẋ1) + (2x2 − x1) = 0. (6.5)

The out-of-phase NNM of this system was computed using polynomial series expansions
and compared to the FEM results in Chapter 1. This mode is now studied for larger
vibration amplitudes. Figure 6.3 presents a three-dimensional view of the NNM. The
invariant manifold computed with the BVP approach is represented by the blue surface
that was obtained by constructing a mesh between adjacent trajectories. The manifold
is covered with a total of 2012 trajectories of arclength L = 150. The initial ellipse was
computed for r0 = 10−3 and each trajectory is computed with NTST = 300 time steps
and NCOL = 4 collocation points in each time interval, for a total of 1200 points per
trajectory.

In order to analyze the complex shape of the surface, two trajectories in the set of coordi-
nates (x1, y1, x2) are reported in Figures 6.4(a) and (b), respectively. Close to the origin,
the trajectories spiral out of the system’s equilibrium point and form an almost planar
surface. Then, as the motion amplitude increases, the trajectories start to describe a more
complex shape and the linear ratio between their amplitudes is lost. The projection of the
trajectories in the (x1, x2) plane shows that the out-of-phase motion that was present at
the origin is now lost for some parts of the trajectory. It is inferred that both coordinates
start to oscillate at different frequencies.

The time series y1(t) and y2(t) computed for an arclength of 5000 are presented in Fig-
ure 6.5. For high vibration amplitudes, the difference between the oscillation frequency
of the first and second DOFs is clearly visible. For low amplitudes, a linear regime with a
classical out-of-phase motion and a phase lag between the coordinates due to damping is
recovered. In order to validate the time series of Figure 6.5, a forward time integration is
performed with a fourth-order Runge-Kutta method for initial conditions defined as the
final point of the trajectory. The comparison leads to a normalized mean-square error
(NMSE) equal to 10−8%.
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Figure 6.3: Out-of-phase NNM of the 2DOF system (6.5). The blue surface is a mesh
built with the trajectories computed by the BVP approach.
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Figure 6.4: Out-of-phase NNM of the 2DOF system (6.5). (a, b) Two trajectories com-
puted using the BVP approach; (c, d) side view of the trajectories (a) and (b), respectively.
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Figure 6.5: Dynamics in forward time for the out-of-phase NNM for y1 (–) and y2 (– –).
Trajectory computed for an arclength of L = 5000.

In view of the amplitudes reached, the regime of motion is very strongly nonlinear. The
dynamics looks complex and would clearly deserve a dedicated study. Due to time con-
straints, a deeper analysis was however not feasible.

The invariant manifold obtained with the FEM algorithm is presented in Figure 6.6(a).
The FEM algorithm was stopped after a dramatic decrease in the energy steps. Two tra-
jectories obtained with the BVP approach are also depicted. For x1 < 5, the trajectories
follow to the FEM surface which shows that the results of both methods are consistent.
For higher vibration amplitudes, the failure of the FEM is explained by the (x1, y1) pa-
rameterization that is no longer adequate. Indeed, to continue to follow the trajectories,
the FEM surface has to simultaneously change its slope and to become almost vertical. In
particular, x2 has to severely decrease and to become negative for x1 > 0. Similarly, x2 has
to become positive for x1 < 0. Another illustration of this sharp transition is presented
in Figure 6.6(b) which shows a projection of the trajectories onto the master coordinates
plane. The two orbits are getting very close to each other in two specific regions pointed
out by arrows. Although they do not cross each other, all the trajectories stack in these
regions where the invariant surface becomes almost vertical (cf. Figure 6.3). Finally, for
higher vibration amplitudes (as, e.g., in Figure 6.5), the projections of the trajectories
onto the plane (x1, y1) cross each other. Although the exact reason for the folding of the
manifold is not clearly identified and would certainly deserve more investigations, it is
interesting to note that the second NNM of the underlying conservative system does not
fold.
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Figure 6.6: Out-of-phase NNM of the 2DOF system (6.5). Comparison between the FEM
(orange) and two trajectories computed using the BVP approach: (a) three-dimensional
view of the NNM in the (x1, y1, x2) space; (b) top view in the master coordinates’ plane
of the FEM. Solid and dashed lines are used to distinguish both trajectories.
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6.2.2 The 2DOF System With Regularized-Coulomb Friction

A 2DOF system including RC friction is now investigated. The equations of motion are

ẍ1 + (2x1 − x2) + Fmax tanh (Rẋ1) = 0,

ẍ2 + (2x2 − x1) = 0. (6.6)

The case where Fmax = 1.3 N and R = 1 rad.s/m was studied in Chapter 5 and is
again considered here. Figure 6.7(a) illustrates the in-phase NNM obtained by the BVP
approach. The manifold is computed using 1,000 trajectories of arclength L = 200. The
elements that form the mesh of the invariant surface are represented in order to illustrate
the structure of the manifold. The surface possesses a wavy shape as it was reported in
Chapter 5. A trajectory is presented in Figure 6.7(b). It spirals to the equilibrium point
and, as it approaches the origin, rapid direction changes occur when the trajectory leaves
the top of a “wave”. The time history of the trajectory is given in Figure 6.7(c). The
classical linear decay rate already observed in Chapter 5 is recovered.

Figure 6.8(a) compares the NNM obtained by the FEM (orange) and the BVP approach
(blue). Both surfaces agree very well around the origin. Figure 6.8(b) presents the abso-
lute error between the two methods. Specifically, for each point belonging to a trajectory
computed by the BVP method, the error is computed by comparing the y1 value obtained
by the BVP and by the FEM for each set of coordinates (x2, y2) of the trajectory. There
exist at least two orders of magnitudes between the error and the values of y1. In the BVP
approach, several parameters can influence this error as, for instance, the initial radius
r0 and the number of time intervals considered in the collocation method. Similarly, for
the FEM algorithm, the size of the initial domain, the size of the annular regions, and
the number of finite elements play a role on this error. Figure 6.8(c) shows that the error
globally decreases as smaller elements are considered.

The case where Fmax = 1.5 N is now considered. The first mode of this system is il-
lustrated in Figure 6.9. The invariant manifold computed with the BVP approach is
presented in Figure 6.9(a). The wavy character of the surface that was not observable in
Chapter 5 is recovered and the surface is, in essence, similar to the reference test case with
Fmax = 1.3 N. One can however note that the deformation of the invariant surface is more
pronounced. In the center of the figure, the solution obtained with the FEM (in orange)
perfectly overlaps the BVP results. The blue mesh also appears to fold in several regions
recognizable by the darker blue color. The projection in Figure 6.9(b) of three trajecto-
ries onto the master’s coordinate plane used by the FEM confirms this observation. The
trajectories appear to intersect each other in two different regions around (u, v) = (−5, 2)
and (u, v) = (2, 5). Clearly, the FEM algorithm is limited by an inappropriate manifold’s
parameterization in these regions.
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Figure 6.7: First NNM of the 2DOF system (6.6). (a) Invariant surface obtained with
the BVP approach; (b) one trajectory on the invariant surface; (c) time series y1(t) for
the trajectory in (b).



Chapter 6. Computation of Damped NNMs Using Boundary Value Problems 137

(a)

−5 0 5
−0.2

−0.1

0

0.1

0.2

A
bs

ol
ut

e 
er

ro
r 

[m
/s

]

y
1
 [m/s] − FEM value

(b)

−5 0 5
−0.2

−0.1

0

0.1

0.2

A
bs

ol
ut

e 
er

ro
r 

[m
/s

]

y
1
 [m/s] − FEM value

(c)

Figure 6.8: Distance along y1 between a trajectory computed using the BVP approach
and the FEM surface. (a) Global mesh with 1,000 elements; (b) global mesh with 10,000
elements.
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Figure 6.9: First NNM of the 2DOF system with regularized Coulomb friction and
Fmax = 1.5 N. (a) Comparison between the BVP results (blue mesh) and the FEM
results (orange mesh). (b) Projection of three trajectories (black curves) computed with
the BVP approach onto the master plane considered by the FEM.
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6.3 Conclusions

In this chapter, we explore an alternative method for computing NNMs of nonconservative
systems. Originally proposed by Doedel in the context of (un)stable invariant manifold
calculation, the method considers successive BVPs to (i) compute a trajectory on the
invariant manifold, (ii) continue the trajectory to cover the manifold. The method does
not rely on a parameterization of the NNM, and can a priori deal with the presence
of internal resonances. In particular, it allows to compute NNMs in regions where the
explicit parameterization used by the FEM fails. The method was shown to be accurate
and provided invariant surfaces in very good agreement with those computed by the FEM.
Moreover, a trajectory computed by the method corresponds directly to the dynamics on
the invariant manifold and can be exploited for dynamical analysis. We note that the
method is not applicable to conservative systems.

In conclusion, we believe that this method, and more generally the methods which locally
grow invariant surfaces, paves the way for a completely new approach to the calculation of
NNMs defined as two-dimensional invariant manifolds. These methods, which are a priori
applicable in presence of internal resonances, provide a more profound understanding of
the dynamics and, in particular, of the influence of damping. Finally, the applicability of
the method to higher-dimensional mechanical systems is still to be investigated. In par-
ticular, in the presence of weak damping, the method might require an important number
of points along the first trajectory in order to reach large amplitude vibrations, which,
in turn, would make the subsequent continuation steps of this trajectory computationally
more intensive.





Conclusions

The objective of this doctoral thesis is to contribute to the development of a practical
analog of modal analysis for nonlinear systems. Specifically, three numerical methods were
considered in this manuscript for the effective computation of nonlinear normal modes
(NNMs) of both conservative and nonconservative systems. Table 6.1 presents a summary
of their main characteristics.

The first algorithm that was considered combines a shooting method with the pseudo-
arclength continuation technique. Based on the extension of Rosenberg’s definition, the
method computes periodic solutions of nonlinear conservative systems. The algorithm is
computationally effective so that it was applied in Chapter 2 to investigate the dynam-
ics of a real-life aerospace structure, the SmallSat spacecraft. The method can handle
internal resonances (IR), which enabled us to study some specific modal interactions of
the satellite. An important result of the thesis is that, thanks to the NNM theory and
the algorithm, we were able to reproduce numerically and explain the modal interactions
identified experimentally. Such results demonstrate, if it was still necessary, that NNMs
represent a very useful concept for the interpretation of nonlinear oscillations.

The second algorithm was developed within the framework of this thesis and solves the
manifold-governing partial differential equations (PDEs) obtained from Shaw and Pierre’s
definition. It relies on the finite element (FE) method, and combines a streamline up-

Definition Conservative Nonconservative IR By-product

Shooting-based
method

Rosenberg
extended

Yes. No. Yes.
Dynamics
on NNM
FEP

FE-based
method

Shaw
& Pierre

Yes. Yes. No.
Dynamics
on NNM
ROM

Trajectory-based
method

Shaw
& Pierre

No. Yes. Yes.
Dynamics
on NNM

Table 6.1: Features of the different methods exploited in this thesis.

141



Conclusions 142

wind Petrov-Galerkin (SUPG) formulation with a resolution strategy based on annular
domains. As a result, the manifold is grown sequentially, which leads to a significant
decrease in computational time. In view of the hyperbolic nature of the governing PDEs,
specific attention has to be paid to the definition of the computational domain bound-
aries. Eventually, the domains were defined using Lyapunov functions, which were found
to be particularly helpful for this purpose. One significant advantage of this FE method
over the shooting method is that both conservative and nonconservative systems can be
studied. However, although the method was applied to a relatively large-scale problem
(i.e., the Paris aircraft), the resolution of the PDEs is computationally more demanding
than the boundary value problem (BVP) of the shooting method. Because it is geometric
by nature, the FE method has the distinctive feature to provide a reduded-order model
(ROM) of the dynamics. Conversely, since time is eliminated when constructing the man-
ifold, a direct access to motion frequency is not available. The main limitation of the FE
method is certainly the fact that it relies on an explicit parameterization of the invariant
manifold. Such parameterization no longer exists when folding of the manifold occurs,
e.g., when an internal resonance is encountered.

The third algorithm for the computation of NNMs addresses the latter limitation of the
FE method and exploits a technique proposed by Doedel. Also based on Shaw and
Pierre’s definition, the method covers the two-dimensional invariant manifold that repre-
sents a NNM with a collection of trajectories. Similarly to the shooting-based method,
the trajectories are defined using BVP problems, but the method is naturally applicable
to nonconservative systems. However, the effectiveness of the method for lightly-damped
systems for which trajectories slowly spiral out of the equilibrium point is more question-
able as a large number of collocation points can be required. Another drawback is that
the absence of parameterization complicates the construction of a ROM.

In conclusion, it turns out that there is not yet an universal method that can compute
the NNMs of large-scale, damped and undamped nonlinear mechanical systems featuring
modal interactions. However, we believe that by combining the respective strengths and
characteristics of the three methods studied in this thesis the dynamics of a relatively
large class of nonlinear systems can be adequately addressed.

Directions for Future Work

Since we devoted the vast majority of our efforts to the numerical computation of nonlinear
normal modes, a detailed analysis and interpretation of the dynamics on the computed
manifolds could not be performed during this research. Yet, the results obtained herein,
particularly in Chapters 5 and 6, show that the manifolds carry important and relevant
information. An immediate perspective of this research is therefore the direct exploitation
of the numerical tools, developed to uncover the role played by (linear and nonlinear)
damping in the systems dynamics. This makes even more sense when one considers that
even viscous damping can, for instance, turn hardening nonlinear behavior into softening
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behavior.

In addition, realizing that a seemingly simple two-degree-of-freedom system can possess a
countable infinity of modal interactions, a fundamental question is how these modal inter-
actions survive damping. Starting from the conservative system and increasing damping
gradually would allow to identify the dynamical mechanisms that lead to the persistence
or elimination of modal interactions. More generally, the presence of mode bifurcations
leads to the existence of new NNMs which cannot be regarded as the direct extension
of a linear normal mode. These modes can convey important dynamics as, e.g., modal
interactions. The importance of these supernumerary families of periodic solutions in
complex systems remains an open question [26, 160].

Besides progressing toward a more fundamental understanding of nonlinear oscillations,
the algorithms developed in this thesis can also find other applications in structural dy-
namics. A first example is the construction of reduced-order models. The FE method
could be used to capture the essential damped dynamics of complex nonlinear systems
and, therefore, facilitate their dynamical analysis. Another field of application is the de-
sign of nonlinear vibration absorbers and energy harvesters where damping plays a central
role [23, 56, 156]. The algorithms could help validate the theoretical developments, fur-
ther investigate the damped dynamics and better characterize the performance of the
devices. Finally, a finite element model updating methodology that would rely on the
comparison between experimentally-identified and theoretically-predicted NNMs was not
yet proposed in the literature. There is no doubt that NNMs provide a sound basis for
improving and validating the mathematical models developed by engineers. For instance,
NNMs could be very useful during ground vibration testing of aircraft and during the
subsequent model validation effort.





Appendix A

Bifurcation Analysis

In the continuation algorithm presented in Chapter 1, the monodromy matrix was in-
troduced as an essential component of the linearization of the shooting function. This
2N × 2N matrix was defined as

Φ =
∂zp(T, zp0)

∂zp0

, (A.1)

where zp(T, zp0) is a periodic solution of period T corresponding to initial conditions
zp0. The monodromy matrix represents the sensitivity of the solution at time T with
respect to initial conditions. It determines whether a small initial perturbation decays or
grows. In the present continuation algorithm, the monodromy matrix is computed using a
sensitivity analysis embedded into the time integration procedure of the shooting method.

The eigenvalues µi of the monodromy matrix are the so-called Floquet multipliers which
determine the stability of a periodic orbit. If an eigenvalue is larger than one (i.e., |µi| >
1), the orbit is said unstable. Conversely, the periodic orbit is stable if |µi| < 1,∀i. As
demonstrated, e.g., in [141], one multiplier always equals +1. The notion of stability
is closely related to the notion of bifurcation because stability changes occur through
bifurcations. Periodic solutions often encounter one of the three following bifurcations:

1. the saddle-node (SN) or fold bifurcation, where a Floquet multiplier crosses the
unit circle through +1. This bifurcation is also called limit-point (LP) bifurcation
in Chapter 2.

2. the period-doubling (PD) or flip bifurcation, where a Floquet multiplier crosses the
unit circle through −1.

3. the Neimark-Sacker (NS) or torus bifurcation, where a pair of (complex conjugate)
Floquet multipliers crosses simultaneously the unit circle.

During the continuation of a family of periodic solutions, a convenient way to detect the
presence of bifurcations and to analyze their nature is to rely on so-called test functions.
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A test function is scalar function ψ(z) whose zero corresponds to a bifurcation point.
A bifurcation is therefore detected as a change of sign of the test function between two
successive periodic solutions zk

p and zk+1
p :

ψ(zk
p)ψ(zk+1

p ) < 0. (A.2)

The test functions that were introduced in the continuation algorithm are [10, 85]:

ψLP = det (Pz − I2N) , (A.3)

ψPD = det (Pz + I2N) , (A.4)

ψNS = det (Pz ⊙ Pz − Im) , (A.5)

where Im is an identity matrix, m = 1
2
N(N − 1), A ⊙ B denotes the bialternate product

of the two matrices A and B, and the matrix Pz is the linearization of the Poincaré map
P.

In the presence of harmonic excitation, as in Chapter 2, the autonomous character of the
system is preserved by introducing an artificial state-space variable, increasing therefore
the system’s dimensionality of 1. Simultaneously, in the presence of harmonic forcing, a
Poincaré map reducing the system’s dimensionality of 1 is easily constructed by taking
snapshots of the dynamics every time interval T (where T is the forcing period). The
resulting Poincaré section is thus 2N -dimensional and its linearization corresponds to Φ.

Ultimately, in order to accurately identify a bifurcation point, a standard secant method
is considered in order to efficiently reach the actual zero of the test function.
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