Press "Enter" to skip to content

New Paper on Numerical Continuation in Nonlinear Experiments using Local Gaussian Process Regression

I’ve just recently submitted a new paper entitled “Numerical Continuation in Nonlinear Experiments using Local Gaussian Process Regression.

In this paper, control-based continuation (CBC) is combined with a novel continuation algorithm that is robust to experimental noise and enables the tracking of geometric features of the response surface such as folds. The method uses Gaussian process regression to create a local model of the response surface on which standard numerical continuation algorithms can be applied. The local model evolves as continuation explores the experimental parameter space, exploiting previously captured data to actively select the next data points to collect such that they maximise the potential information gain about the feature of interest. The method is demonstrated experimentally on a nonlinear structure featuring harmonically-coupled modes. Fold points present in the response surface of the system are followed and reveal the presence of an isola, i.e. a branch of periodic responses detached from the main resonance peak.